Skip to main content
Log in

Functional characterization of a putative disaccharide membrane transporter in crustacean intestine

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Transepithelial absorption of dietary sucrose in the American lobster, Homarus americanus, was investigated by mounting an intestine in a perfusion chamber to characterize mucosal to serosal (MS) 14C-sucrose transport. These fluxes were measured by adding varying concentrations of 14C-sucrose to the perfusate and monitoring their appearance in the bathing solution. Transepithelial 14C-sucrose transport was the combination of a hyperbolic function of luminal concentration, following Michaelis–Menten kinetics, and apparent diffusion. The kinetic constants of the putative sucrose transporter were K M  = 20.50 ± 6.00 µM and J max = 1.81 ± 0.50 pmol/cm2 × min. Phloridzin, an inhibitor of Na+-dependent mucosal glucose transport, decreased MS 14C-sucrose transport. Decreased MS 14C-sucrose transport also occurred in the presence of luminal trehalose, a disaccharide containing d-glucose moieties. Thin-layer chromatography (TLC) identified the chemical nature of radioactively labeled sugars in the bath following transepithelial transport. TLC revealed 14C-sucrose was transported across the intestine largely intact with no 14C-glucose or 14C-fructose appearing in the serosal bath or luminal perfusate. Only 13 % of bath radioactivity was volatile metabolites. Results suggest that disaccharide sugars can be transported intact across crustacean intestine and support the occurrence of a functional disaccharide membrane transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahearn GA, Maginniss LA (1977) Kinetics of glucose transport by the perfused mid-gut of the freshwater prawn, Macrobrachium rosenbergii. J Physiol 271:319–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahearn GA, Grover ML, Dunn RE (1985) Glucose transport by lobster hepatopancreatic brush border membrane vesicles. Am J Physiol 248:R133–R141

    CAS  PubMed  Google Scholar 

  • Ahearn GA, Behnke RD, Zonno V, Storelli C (1992) Kinetic heterogeneity of Na/d-glucose cotransport in absorptive organs of the teleost gastrointestinal tract. Am J Physiol 263:R1018–R1023

    CAS  PubMed  Google Scholar 

  • Alvarado F, Lherminier M, Phan HH (1984) Hamster intestinal disaccharide absorption: Extracellular hydrolysis precedes transport of monosaccharide products. J Physiol 355:493–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bankar S, Bule M, Singhal R, Ananthanarayan L (2009) Glucose oxidase: an overview. Biotechnol Adv 27:489–501

    Article  CAS  PubMed  Google Scholar 

  • Burant C, Takeda J, Brot-Laroche E, Bell G, Davidson N (1992) Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 267:14523–14526

    CAS  PubMed  Google Scholar 

  • Chu K (1986) Glucose transport by the in vitro perfused midgut of the Blue crab Callinectes sapidus. J Exp Biol 123:325–344

    CAS  Google Scholar 

  • Conrad EM, Ahearn GA (2005) 3H-l-histidine and 65Zn2+ are co-transported by dipeptide transport system in the lobster (Homarus americanus) intestine. J Exp Biol 208:287–296

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Rubio-Aliaga I (2003) An update on renal peptide transporters. Am J Physiol Renal Physiol 284:F885–F892

    CAS  PubMed  Google Scholar 

  • Finkelstein A (1976) Water and nonelectrolyte permeability of lipid bilateral membranes. J Gen Physiol 68:127–135

    Article  CAS  PubMed  Google Scholar 

  • Goodman B (2010) The GLUT2 transporter on the basolateral side of the cell allows the release of sugars into the bloodstream. Adv Physiol Edu 34:44–53

    Article  Google Scholar 

  • Gosch C, Halbwirth H, Stich K (2010) Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71:838–843

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Ruiz D, Knipp GT (2003) Current perspectives on established and putative mammalian oligopeptide transporters. J Pharmaceut Sci 92:691–714

    Article  CAS  Google Scholar 

  • Meyer H, Vitasvska O, Wieczorek H (2011) Identification of an animal sucrose transporter. J Cell Sci 124:1984–1991

    Article  CAS  PubMed  Google Scholar 

  • Miller D, Crane R (1963) The digestion of carbohydrates in the small intestine. Am J Clin Nutr 12:220–227

    CAS  Google Scholar 

  • Obi IE, Sterling KM, Ahearn GA (2011) Transepithelial d-glucose and d-fructose transport across American lobster, Homarus americanus, intestine. J Exp Biol 214:2337–2344

    Article  CAS  PubMed  Google Scholar 

  • Peterson ML, Lane AL, Ahearn GA (2014) Analysis of glycylsarcosine transport by lobster intestine using gas chromatography. J Comp Physiol B. doi:10.1007/s00360-014-0863-7

    PubMed  Google Scholar 

  • Raja M, Tyagi N, Kinne R (2003) Phloretin recognition in a C-terminal fragment of SGLT1 studied by tryptophan scanning and affinity labeling. J Biol Chem 278:49154–49163

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Sivitz A, Hsi A, Grof C, Perroux J, Ward J (2006) Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose. Plant Cell Environ 29:1871–1880

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Sivitz AB, Ward JM (2012) Evolution of plant sucrose uptake transporters. Front Plant Sci 3:1–12

    Article  Google Scholar 

  • Reiser S, Michaelis O, Putney J, Hallfrisch J (1974) Effects of sucrose feeding on the intestinal transport of sugars in two strains of rats. J Nutr 105:894–904

    Google Scholar 

  • Reshkin SJ, Ahearn GA (1987) Effects of salinity adaptation on glucose transport by intestinal brush border membrane vesicles of a euryhaline teleost. Am J Physiol 252:R579–R586

    CAS  PubMed  Google Scholar 

  • Stahl E (1969) Thin layer chromatography. Springer, New York

    Book  Google Scholar 

  • Sterling K, Cheeseman C, Ahearn GA (2009) Identification of a novel sodium-dependent fructose transport activity in the hepatopancreas of the Atlantic lobster Homarus americanus. J Exp Biol 212:1912–1920

    Article  CAS  PubMed  Google Scholar 

  • Thamotharan M, Ahearn GA (1996) Dipeptide transport by crustacean hepatopancreas brush border membrane vesicles. J Exp Biol 199:635–641

    CAS  PubMed  Google Scholar 

  • Thamotharan M, Gomme J, Zonno V, Maffia M, Storelli C, Ahearn GA (1996) Electrogenic proton-coupled, intestinal dipeptide transport in herbivorous and carnivorous teleosts. Am J Physiol 270:1939–1947

    Google Scholar 

  • Verri T, Mandal A, Zilli L, Bossa D, Mandal PK, Ingrosso L, Zonno V, Vilella S, Ahearn GA, Storelli C (2001) d-glucose transport in decapod crustacean hepatopancreas. Comp Biochem Physiol A 130:585–606

    Article  CAS  Google Scholar 

  • Verri T, Romano A, Barca A, Kottra G, Daniel H, Storelli C (2010) Transport of di-and tripeptides in teleost fish intestine. Aquac Res 41:641–643

    Article  CAS  Google Scholar 

  • Walmsley A, Barrett M, Bringuad F, Gould G (1998) Sugar transporters from bacteria, parasites and mammals: structure-activity relationships. TIBS Rev 23:476–481

    CAS  Google Scholar 

  • Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol 90:207–217

    Article  CAS  PubMed  Google Scholar 

  • Willenbrink J, Doll S (1979) Characteristics of the sucrose uptake system of vacuoles isolated from red beet tissue. Planta 147:159–162

    Article  CAS  PubMed  Google Scholar 

  • Wright S, Ahearn GA (1997) Nutrient absorption in invertebrates. In: Proceedings of handbook of physiology (Sect 13: Comparative physiology), vol II, Chap 16: pp 1137–1206

  • Wright E, Hirayama B, Loo D (2007) Active sugar transport in health and diseases. J Int Med 26:32–43

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the USDA Grant No. 2010-65206-20617. The authors would like to express gratitude to Dr. Corey Causey and Dr. Julie Avery (University of North Florida) for providing materials and assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Ahearn.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likely, R., Johnson, E. & Ahearn, G.A. Functional characterization of a putative disaccharide membrane transporter in crustacean intestine. J Comp Physiol B 185, 173–183 (2015). https://doi.org/10.1007/s00360-014-0876-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0876-2

Keywords

Navigation