Skip to main content
Log in

Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Several parameters can affect membrane lipid composition in bivalves, including diet. Although two fatty acids (FA) 22:6n-3 and 20:5n-3 are essential membrane components, they are sparingly synthesized by bivalves and must be obtained from their diet. Here, effects of dietary modifications of membrane lipid composition were studied at both cellular and subcellular levels in the oyster Crassostrea gigas. To this end, we compared oysters fed two monoalgal diets that differed markedly in their FA composition and a mix of both. As expected, algae impacted phospholipids, in particular 22:6n-3 and 20:5n-3, reflecting differences of dietary microalgae FA composition. Meantime, total saturated FA, total monounsaturated FA, total polyunsaturated FA and total non-methylene-interrupted FA varied little and phospholipid class composition was only slightly affected by diets. Measures made in hemocytes indicated that only mitochondrial membrane potential was affected by diets. Total ROS production as well as mitochondrial superoxide production did not differ with diet. There was no difference in phosphorylating (state 3) and non-phosphorylating (state 4) rates of oxygen consumption rates or in cytochrome c oxidase activity of mitochondria isolated from gills between the three diets. Similarly, neither cytochromes a, b, c or c 1 content nor citrate synthase activities were changed, suggesting that number and morphology of mitochondria were not affected by dietary treatment. These results suggest that oysters could possess high homeostatic capabilities, at both cellular and subcellular levels, to minimize the effect of dietary FA and related membrane lipid FA modifications on mitochondrial functions. These capabilities could be a means to face variations in diet composition in their natural environment and to preserve important oyster physiological functions such as growth and reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott SK, Else PL, Atkins TA, Hulbert AJ (2012) Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim Biophys Acta 1818:1309–1317

    Article  PubMed  CAS  Google Scholar 

  • Albentosa M, Perez-Camacho A, Labarta U, Beiras R, Fernandez-Reiriz M (1993) Nutritional value of algal diets to clam spat Venerupis pullastra. Mar Ecol Prog Ser 97:261–269

    Article  Google Scholar 

  • Astorg PO, Chevalier J (1991) Phospholipid fatty acid composition and respiratory properties of heart and liver mitochondria from rats fed with or deprived of linolenic acid. Nutr Res 11:71–77

    Article  CAS  Google Scholar 

  • Auffret M, Oubella R (1995) Cytology and cytometric analysis of bivalve mollusc haemocytes. In: Stolen JS et al (eds) Techniques in fish immunology, immunology and pathology of aquatic invertebrates. SOS Publications, Fair Haven, pp 55–64

    Google Scholar 

  • Brown MF, Stuart JA (2007) Correlation of mitochondrial superoxide dismutase and DNA polymerase β in mammalian dermal fibroblasts with species maximal lifespan. Mech Ageing Dev 128:696–705

    Article  PubMed  CAS  Google Scholar 

  • Delaporte M, Soudant P, Moal J, Lambert C, Quéré C, Miner P, Choquet G, Paillard C, Samain JF (2003) Effect of a mono-specific algal diet on immune functions in two bivalve species—Crassostrea gigas and Ruditapes philippinarum. J Exp Biol 206:3053–3064

    Article  PubMed  CAS  Google Scholar 

  • Delaporte M, Soudant P, Moal J, Kraffe E, Marty Y, Samain JF (2005) Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp Biochem Phys A 140:460–470

    Article  CAS  Google Scholar 

  • Delaporte M, Soudant P, Moal J, Giudicelli E, Lambert C, Séguineau C, Samain JF (2006) Impact of 20:4n-6 supplementation on the fatty acid composition and hemocyte parameters of the Pacific oyster Crassostrea gigas. Lipids 41:567–576

    Article  PubMed  CAS  Google Scholar 

  • Delaporte M, Chu FL, Langdon C, Moal J, Lambert C, Samain JF, Soudant P (2007) Changes in biochemical and hemocyte parameters of the Pacific oysters Crassostrea gigas fed T-Iso supplemented with lipid emulsions rich in eicosapentaenoic acid. J Exp Mar Biol Ecol 343:261–275

    Article  CAS  Google Scholar 

  • Delaunay F, Marty Y, Moal J, Samain JF (1993) The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J Exp Mar Biol Ecol 173:163–179

    Article  CAS  Google Scholar 

  • Demaison L, Sergiel JP, Moreau D, Grynberg A (1994) Influence of the phospholipid n-6/n-3 polyunsaturated fatty acid ratio on the mitochondrial oxidative metabolism before and after myocardial ischemia. Biochim Biophys Acta 1227:53–59

    Article  PubMed  CAS  Google Scholar 

  • Donaghy L, Kraffe E, Le Goïc N, Lambert C, Volety AK, Soudant P (2012) Reactive oxygen species in unstimulated hemocytes of the Pacific oyster Crassostrea gigas: a mitochondrial involvement. PLoS One 7(10):e46594. doi:10.1371/journal.pone.0046594

  • Dudognon T, Soudant P, Seguineau C, Quéré C, Auffret M, Kraffe E (2013) Functional capacities of gill mitochondria in oyster Crassostrea gigas during an emersion/immersion tidal cycle. Aquat Living Resour 26:249–256

    Article  CAS  Google Scholar 

  • Enríquez-Díaz M, Pouvreau S, Chávez-Villalba J, Le Pennec M (2009) Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: evidence of an environment-dependent strategy. Aquacult Int 17:491–506

    Article  Google Scholar 

  • Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. In: Estabrook RW, Pullman ME (eds) Oxidation and phosphorylation. Academic Press, New York

    Google Scholar 

  • Frick NT, Bystriansky JS, Ip YK, Chew SF, Ballantyne JS (2010) Cytochrome c oxidase is regulated by modulations in protein expression and mitochondrial membrane phospholipid composition in estivating African lungfish. Am J Physiol Reg Integr Comp Physiol 298:608–616

    Article  CAS  Google Scholar 

  • Gerson AR, Brown JCL, Thomas R, Bernards MA, Staples JF (2008) Effects of dietary polyunsaturated fatty acids on mitochondrial metabolism in mammalian hibernation. J Exp Biol 211:2689–2699

    Article  PubMed  CAS  Google Scholar 

  • González-Araya R, Quéau I, Quéré C, Moal J, Robert R (2011) A physiological and biochemical approach to selecting the ideal diet for Ostrea edulis (L.) broodstock conditioning (part A). Aquac Res 42:710–726

    Article  CAS  Google Scholar 

  • Grisham MB (2011) Detection of reactive metabolites of oxygen and nitrogen. In: Abele D, Vázquez-Medina JP, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. Wiley, Chichester

    Google Scholar 

  • Guderley H (2004) Metabolic responses to low temperature in fish muscle. Biol Rev 79:409–427

    Article  PubMed  Google Scholar 

  • Guderley H, Pierre JS, Couture P, Hulbert AJ (1997) Plasticity of the properties of mitochondria from rainbow trout red muscle with seasonal acclimatization. Fish Physiol Biochem 16:531–541

    Article  CAS  Google Scholar 

  • Guderley H, Kraffe E, Bureau W, Bureau DP (2008) Dietary fatty acid composition changes mitochondrial phospholipids and oxidative capacities in rainbow trout red muscle. J Comp Physiol B 178:385–399

    Article  PubMed  CAS  Google Scholar 

  • Guderley H, Brokordt K, Pérez Cortés HM, Marty Y, Kraffe E (2011) Diet and performance in the scallop, Argopecten purpuratus: force production during escape responses and mitochondrial oxidative capacities. Aquat Living Resour 24:261–271

    Article  CAS  Google Scholar 

  • Haberkorn H, Lambert C, Le Goïc N, Guéguen M, Moal J, Palacios E, Lassus P, Soudant P (2010) Effects of Alexandrium minutum exposure upon physiological and hematological variables of diploid and triploid oysters, Crassostrea gigas. Aquat Toxicol 97:96–108

    Article  PubMed  CAS  Google Scholar 

  • Helm MM, Laing I (1987) Preliminary observations on the nutritional value of “Tahiti Isochrysis” to bivalve larvae. Aquaculture 62:281–288

    Article  Google Scholar 

  • Hirunpanich V, Sethabouppha B, Sato H (2007) Inhibitory effects of saturated and polyunsaturated fatty acids on the cytochrome P450 3A activity in rat liver microsomes. Biol Pharm Bull 30:1586–1588

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ (2007) Membrane fatty acids as pacemakers of animal metabolism. Lipids 42:811–819

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ (2008) The links between membrane composition, metabolic rate and lifespan. Comp Biochem Phys A 150:196–203

    Article  CAS  Google Scholar 

  • Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199:257–274

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Else PL (2005) Membranes and the setting of energy demand. J Exp Biol 208:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Keller M, Sommer AM, Portner HO, Abele D (2004) Seasonality of energetic functioning and production of reactive oxygen species by lugworm (Arenicola marina) mitochondria exposed to acute temperature changes. J Exp Biol 207:2529–2538

    Article  PubMed  CAS  Google Scholar 

  • Khairallah RJ, Kim J, O’Shea KM, O’Connell KA, Brown BH, Galvao T, Daneault C, Rosiers CD, Polster BM, Hoppel CL, Stanley WC (2012) Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids. PLoS One 7(3):e34402. doi:10.1371/journal.pone.0034402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kraffe E, Soudant P, Marty Y (2004) Fatty acids of serine, ethanolamine, and choline plasmalogens in some marine bivalves. Lipids 39:59–66

    Article  PubMed  CAS  Google Scholar 

  • Kraffe E, Marty Y, Guderley H (2007) Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. J Exp Biol 210:149–165

    Article  PubMed  CAS  Google Scholar 

  • Kraffe E, Tremblay R, Belvin S, LeCoz JR, Marty Y, Guderley H (2008) Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar Biol 156:25–38

    Article  CAS  Google Scholar 

  • Lambert C, Soudant P, Choquet G, Paillard C (2003) Measurement of Crassostrea gigas hemocyte oxidative metabolism by flow cytometry and the inhibiting capacity of pathogenic vibrios. Fish Shellfish Immun 15:225–240

    Article  CAS  Google Scholar 

  • Larqué E, García-Ruiz P-A, Perez-Llamas F, Zamora S, Gil A (2003) Dietary trans fatty acids alter the compositions of microsomes and mitochondria and the activities of microsome Δ6-fatty acid desaturase and glucose-6-phosphatase in livers of pregnant rats. J Nutr 133:2526–2531

    PubMed  Google Scholar 

  • Latendresse JR, Warbrittion AR, Jonassen H, Creasy DM (2002) Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol 30:524–533

    Article  PubMed  Google Scholar 

  • Le Grand F, Kraffe E, Marty Y, Donaghy L, Soudant P (2011) Membrane phospholipid composition of hemocytes in the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum. Comp Biochem Phys A 159:383–391

    Article  CAS  Google Scholar 

  • Le Grand F, Soudant P, Marty Y, Le Goïc N, Kraffe E (2013) Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia. Chem Phys Lipids 167–168:9–20

    Article  PubMed  CAS  Google Scholar 

  • Leary SC, Lyons CN, Rosenberger AG, Ballantyne JS, Stillman J, Moyes CD (2003) Fiber-type differences in muscle mitochondrial profiles. Am J Physiol Reg Integr Comp Physiol 285:817–826

    Google Scholar 

  • Lemieux H, Blier PU, Tardif JC (2008) Does membrane fatty acid composition modulate mitochondrial functions and their thermal sensitivities? Comp Biochem Phys A 149:20–29

    Article  CAS  Google Scholar 

  • Leonard F, Haag M, Kruger MC (2001) Modulation of intestinal vitamin D receptor availability and calcium ATPase activity by essential fatty acids. Prostag Leukotr Ess 64:147–150

    Article  CAS  Google Scholar 

  • Logue JA, De Vries AL, Fodor E, Cossins AR (2000) Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J Exp Biol 203:2105–2115

    PubMed  CAS  Google Scholar 

  • Malis CD, Weber PC, Leaf A, Bonventre JV (1990) Incorporation of marine lipids into mitochondrial membranes increases susceptibility to damage by calcium and reactive oxygen species: evidence for enhanced activation of phospholipase A2 in mitochondria enriched with n-3 fatty acids. Proc Natl Acad Sci 87:8845–8849

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mann R (1979) Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures. J Mar Biol Assoc UK 59:95–110

    Article  CAS  Google Scholar 

  • Martin N, Bureau DP, Marty Y, Kraffe E, Guderley H (2013) Dietary lipid quality and mitochondrial membrane composition in trout: responses of membrane enzymes and oxidative capacities. J Comp Physiol B 183:393–408

    Article  PubMed  CAS  Google Scholar 

  • Martínez G, Aguilera C, Mettifogo L (2000) Interactive effects of diet and temperature on reproductive conditioning of Argopecten purpuratus broodstock. Aquaculture 183:149–159

    Article  Google Scholar 

  • Marty Y, Delaunay F, Moal J, Samain JF (1992) Changes in the fatty acid composition of Pecten maximus (L.) during larval development. J Exp Mar Biol Ecol 163:221–234

    Article  CAS  Google Scholar 

  • McCue MD, Amitai O, Khozin-Goldberg I, McWilliams SR, Pinshow B (2009) Effect of dietary fatty acid composition on fatty acid profiles of polar and neutral lipid tissue fractions in zebra finches, Taeniopygia guttata. Comp Biochem Physiol 154:165–172

    Article  CAS  Google Scholar 

  • McMillin JB, Bick RJ, Benedict CR (1992) Influence of dietary fish oil on mitochondrial function and response to ischemia. Am J Physiol Heart Circ Physiol 263:1479–1485

    Google Scholar 

  • McMurchie EJ, Abeywardena MY, Charnock JS, Gibson RA (1983) Differential modulation of rat heart mitochondrial membrane-associated enzymes by dietary lipid. Biochim Biophys Acta 760:13–24

    Article  PubMed  CAS  Google Scholar 

  • Milke LM, Bricelj VM, Parrish CC (2004) Growth of postlarval sea scallops, Placopecten magellanicus, on microalgal diets, with emphasis on the nutritional role of lipids and fatty acids. Aquaculture 234:293–317

    Article  CAS  Google Scholar 

  • Milke LM, Bricelj VM, Parrish CC (2006) Comparison of early life history stages of the bay scallop, Argopecten irradians: effects of microalgal diets on growth and biochemical composition. Aquaculture 260:272–289

    Article  CAS  Google Scholar 

  • Morash AJ, Bureau DP, McClelland GB (2009) Effects of dietary fatty acid composition on the regulation of carnitine palmitoyltransferase (CPT) I in rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B 152:85–93

    Article  CAS  Google Scholar 

  • Moya-Falcón C, Hvattum E, Dyrøy E, Skorve J, Stefansson SO, Thomassen MS, Jakobsen JV, Berge RK, Ruyter B (2004) Effects of 3-thia fatty acids on feed intake, growth, tissue fatty acid composition, beta-oxidation and Na+, K+-ATPase activity in Atlantic salmon. Comp Biochem Phys B 139:657–668

    Article  CAS  Google Scholar 

  • Mukhopadhyay P, Rajesh M, Haskó G, Hawkins BJ, Madesh M, Pacher P (2007) Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2:2295–2301

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Munro D, Blier PU (2012) The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell 11:845–855

    Article  PubMed  CAS  Google Scholar 

  • Nathan AT, Singer M (1999) The oxygen trail: tissue oxygenation. Br Med Bull 55:96–108

    Article  PubMed  CAS  Google Scholar 

  • Pennarun AL, Prost C, Haure J, Demaimay M (2003) Comparison of two microalgal diets. 1. Influence on the biochemical and fatty acid compositions of raw oysters (Crassostrea gigas). J Agric Food Chem 51:2006–2010

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pirini M, Manuzzi MP, Pagliarani A, Trombetti F, Borgatti AR, Ventrella V (2007) Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp Biochem Phys B 147:616–626

    Article  CAS  Google Scholar 

  • Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163

    Article  PubMed  CAS  Google Scholar 

  • Rohrbach S (2009) Effects of dietary polyunsaturated fatty acids on mitochondria. Curr Pharm Design 15:4103–4116

    Article  CAS  Google Scholar 

  • Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31

    Article  PubMed  CAS  Google Scholar 

  • Senault C, Yazbeck J, Goubern M, Portet R, Vincent M, Gallay J (1990) Relation between membrane phospholipid composition, fluidity and function in mitochondria of rat brown adipose tissue. Effect of thermal adaptation and essential fatty acid deficiency. Biochim Biophys Acta 1023:283–289

    Article  PubMed  CAS  Google Scholar 

  • Silina AV, Zhukova NV (2007) Growth variability and feeding of scallop Patinopecten yessoensis on different bottom sediments: evidence from fatty acid analysis. J Exp Mar Biol Ecol 348:46–59

    Article  CAS  Google Scholar 

  • Soudant P, Marty Y, Moal J, Robert R, Quéré C, Le Coz JR, Samain JF (1996a) Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143:361–378

    Article  CAS  Google Scholar 

  • Soudant P, Marty Y, Moal J, Samain J (1996b) Fatty acids and egg quality in great scallop. Aquacult Int 4:191–200

    Article  Google Scholar 

  • Soudant P, Moal J, Marty Y, Samain JF (1996c) Impact of the quality of dietary fatty acids on metabolism and the composition of polar lipid classes in female gonads of Pecten maximus (L.). J Exp Mar Biol Ecol 205:149–163

    Article  CAS  Google Scholar 

  • Soudant P, Moal J, Marty Y, Samain JF (1997) Composition of polar lipid classes in male gonads of Pecten maximus (L.)—effect of nutrition. J Exp Mar Biol Ecol 215:103–114

    Article  CAS  Google Scholar 

  • Soudant P, Van Ryckeghem K, Marty Y, Moal J, Samain JF, Sorgeloos P (1999) Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comp Biochem Phys B 123:209–222

    Article  Google Scholar 

  • Stillwell W, Jenski LJ, Crump FT, Ehringer W (1997) Effect of docosahexaenoic acid on mouse mitochondrial membrane properties. Lipids 32:497–506

    Article  PubMed  CAS  Google Scholar 

  • Stuart JA, Gillis TE, Ballantyne JS (1998) Compositional correlates of metabolic depression in the mitochondrial membranes of estivating snails. Am J Physiol Regul Integr Comp Physiol 275:1977–1982

    Google Scholar 

  • Ventrella V, Pirini M, Pagliarani A, Trombetti F, Manuzzi MP, Borgatti AR (2008) Effect of temporal and geographical factors on fatty acid composition of M. galloprovincialis from the Adriatic sea. Comp Biochem Phys B 149:241–250

    Article  CAS  Google Scholar 

  • Vickery MS, McClintock JB (2000) Effects of food concentration and availability on the incidence of cloning in planktotrophic larvae of the sea star Pisaster ochraceus. Biol Bull 199:298–304

    Article  PubMed  CAS  Google Scholar 

  • Watkins SM, Carter LC, German JB (1998) Docosahexaenoic acid accumulates in cardiolipin and enhances HT-29 cell oxidant production. J Lipid Res 39:1583–1588

    PubMed  CAS  Google Scholar 

  • Weber JM (2011) Metabolic fuels: regulating fluxes to select mix. J Exp Biol 214:286–294

    Article  PubMed  CAS  Google Scholar 

  • Williams JN Jr (1964) A method for the simultaneous quantitative estimation of cytochromes a, b, c1, and c in mitochondria. Arch Biochem Biophys 107:537–543

    Article  PubMed  CAS  Google Scholar 

  • Wodtke E (1981) Temperature adaptation of biological membranes. The effects of acclimation temperature on the unsaturation of the main neutral and charged phospholipids in mitochondrial membranes of the carp (Cyprinus carpio L.). Biochim Biophys Acta 640:698–709

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Hulbert AJ, Storlien LH, Else PL (2004) Membrane lipids and sodium pumps of cattle and crocodiles: an experimental test of the membrane pacemaker theory of metabolism. Am J Physiol Regul Integr Comp Physiol 287:633–641

    Article  Google Scholar 

  • Yamaoka S, Urade R, Kito M (1988) Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil. J Nutr 118:290–296

    PubMed  CAS  Google Scholar 

  • Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC, Matak-Vinković D, Murata T, Bernal RA, Stock D, Robinson CV (2011) Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334:380–385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhukova NV (1991) The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp Biochem Phys B 100:801–804

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to all co-workers from the Argenton hatchery for taking care of oysters during the experimental conditioning. Many thanks to Nelly Le Goïc for helping in hemolymph sampling and for histochemistry technique explanations, to Marc Long for helping in tissue grinding and lipid analysis, to Caroline Fabioux and Jean-Philippe Beguel for helping in dissections, to Rossana Sussarellu for helping in mitochondria preparations and to Catherine Seguineau for help on enzymatic activities. Tony Dudognon fellowship was funded by the French Research Ministry (Ministère de l’Enseignement Supérieur et de la Recherche). Funding for the experiment was provided by the project in Europole Mer (research consortium on marine science and technology in Brittany, France): LIPIDOMITO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard Kraffe.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudognon, T., Lambert, C., Quere, C. et al. Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas . J Comp Physiol B 184, 303–317 (2014). https://doi.org/10.1007/s00360-013-0800-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0800-1

Keywords

Navigation