Skip to main content
Log in

Chronic hypoxic incubation blunts thermally dependent cholinergic tone on the cardiovascular system in embryonic American alligator (Alligator mississippiensis)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Environmental conditions play a major role in shaping reptilian embryonic development, but studies addressing the impact of interactions between chronic and acute environmental stressors on embryonic systems are lacking. In the present study, we investigated thermal dependence of cholinergic and adrenergic cardiovascular tone in embryonic American alligators (Alligator mississippiensis) and assessed possible phenotypic plasticity in a chronic hypoxic incubation treatment. We compared changes in heart rate (f H) and mean arterial blood pressure (P M) for chronically hypoxic and normoxic-incubated embryos after cholinergic and adrenergic blockade following three different acute temperature treatments: (1) 30 °C (control incubation temperature), (2) acute, progressive decrease 30–24 °C then held at 24 °C, and (3) acute, progressive increase 30–36 °C then held at 36 °C. f H progressively fell in response to decreasing temperature and rose in response to increasing temperature. P M did not significantly change with decreasing temperature, but was lowered significantly with increasing acute temperature in the normoxic group at 90 % of development only. Propranolol administration (β adrenergic antagonist) produced a significant f H decrease at 24, 30, and 36 °C that was similar at all temperatures for all groups. For normoxic-incubated embryos at 90 % of development, atropine administration (cholinergic antagonist) significantly increased f H in both 24 and 36 °C treatments, but not in the 30 °C control treatment. This atropine response at 24 and 36 °C demonstrated acute thermally dependent cholinergic tone on f H late in development for normoxic-incubated, but not chronically hypoxic-incubated embryos. Collectively, data indicated that cardiovascular control mechanisms in embryonic alligators may be activated by thermal extremes, and the maturation of control mechanisms was delayed by chronic hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAM:

Chorioallantoic membrane

f H :

Heart rate

P M :

Mean arterial pressure

T E :

Temperature of embryo, from thermocouple probe inserted into allantoic fluid

N70 or N90:

Alligator embryos incubated in chronic normoxia, measured at 70 or 90 % of embryonic development, respectively

H70 or H90:

Alligator embryos incubated in chronic hypoxia (10 % O2) beginning at 20 % of development, measured at 70 or 90 % of embryonic development, respectively

References

  • Ackerman RA (1980) Physiological and ecological aspects of gas exchange by sea turtle eggs. Am Zool 20:575–583

    Google Scholar 

  • Ackerman RA (1981) Growth and gas exchange of embryonic sea turtles (Chelonia caretta). Copeia 1981:757–765

    Article  Google Scholar 

  • Altimiras J, Axelsson M (2004) Intrinsic autoregulation of cardiac output in rainbow trout (Oncorhynchus mykiss) at different heart rates. J Exp Biol 207:195–201

    Article  PubMed  Google Scholar 

  • Birchard GF (2000) An ontogenetic shift in the response of heart rates to temperature in the developing snapping turtle (Chelydra serpentina). J Therm Biol 25:287–291

    Article  PubMed  Google Scholar 

  • Birchard GF, Reiber CL (1996) Heart rate during development in the turtle embryo: effect of temperature. J Comp Physiol B 166:461–466

    Article  PubMed  CAS  Google Scholar 

  • Booth DT (2000) The effect of hypoxia on oxygen consumption of embryonic estuarine crocodiles (Crocodylus porosus). J Herpetol 34:478–481

    Article  Google Scholar 

  • Boyer DR (1967) Interaction of temperature and hypoxia on respiratory and cardiac responses in the lizard, Sauromalus obesus. Comp Biochem Physiol 20:437–447

    Article  PubMed  CAS  Google Scholar 

  • Branco LG, Portner HO, Wood SC (1993) Interaction between temperature and hypoxia in the alligator. Am J Physiol Reg Integ Comp 265:R1339–R1343

    CAS  Google Scholar 

  • Burger J (1990) Effects of incubation temperature on behavior of young black racers (Coluber constrictor) and kingsnakes (Lampropeltis getulus). J Herpetol 24:158–163

    Article  Google Scholar 

  • Burggren WW, Keller BB (1997) Development of cardiovascular systems: molecules to organisms. In: Burggren WW, Keller BB (eds) Cambridge University Press, Cambridge, UK, pp 360

  • Burggren WW, Reyna KS (2011) Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 178:13–21

    Article  PubMed  Google Scholar 

  • Chabreck RH (1973) Temperature variation in nests of the American alligator. Herpetologica 29:48–51

    Google Scholar 

  • Clark TD, Butler PJ, Frappell PB (2005) Digestive state influences the heart rate hysteresis and rates of heat exchange in the varanid lizard Varanus rosenbergi. J Exp Biol 208:2269–2276

    Article  PubMed  CAS  Google Scholar 

  • Coulson RA, Hernandez T (1983) Alligator metabolism. Studies on chemical reactions in vivo. Comp Biochem Physiol B 741:1–182

    Google Scholar 

  • Courtice GP (1990) Effect of temperature on cardiac vagal action in the toad (Bufo marinus). J Exp Biol 149:439–447

    PubMed  CAS  Google Scholar 

  • Crossley DA II, Altimiras J (2005) Cardiovascular development in embryos of the American alligator Alligator mississippiensis: effects of chronic and acute hypoxia. J Exp Biol 208:31–39

    Article  PubMed  Google Scholar 

  • Crossley DA II, Hicks JW, Altimiras J (2003) Ontogeny of baroreflex control in the American alligator Alligator mississippiensis. J Exp Biol 206:2895–2902

    Article  PubMed  Google Scholar 

  • Du WG, Thompson MB, Shine R (2010a) Facultative cardiac responses to regional hypoxia in lizard embryos. Comp Biochem Physiol A 156:491–494

    Article  Google Scholar 

  • Du WG, Ye H, Zhao B, Warner DA, Shine R (2010b) Thermal acclimation of heart rates in reptilian embryos. PLoS One 5:e15308

    Article  PubMed  CAS  Google Scholar 

  • Elphick MJ, Shine R (1998) Longterm effects of incubation temperatures on the morphology and locomotor performance of hatchling lizards (Bassiana duperreyi, Scincidae). Biol J Linn Soc 63:429–447

    Article  Google Scholar 

  • Eme J, Altimiras J, Hicks JW, Crossley DA II (2011a) Hypoxic alligator embryos: chronic hypoxia, catecholamine levels and autonomic responses of in ovo alligators. Comp Biochem Physiol A 160:412–420

    Article  CAS  Google Scholar 

  • Eme J, Hicks JW, Crossley DA II (2011b) Chronic hypoxic incubation blunts a cardiovascular reflex loop in embryonic American alligator (Alligator mississippiensis). J Comp Physiol B 181:981–990

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MWJ (1985) Reproductive biology and embryology of the crocodilians. In: Gans C, Billet F, Maderson P (eds) Biology of the reptilia, 14A edn. Wiley, New York, pp 329–349

    Google Scholar 

  • Gamperl KA, Swafford BL, Rodnick KJ (2011) Elevated temperature, per se, does not limit the ability of rainbow trout to increase stroke volume. J Therm Biol 36:7–14

    Article  Google Scholar 

  • Gasser HS (1931) Nerve activity as modified by temperature changes. Am J Physiol 97:254–276

    CAS  Google Scholar 

  • Glass ML, Hicks JW, Riedesel ML (1979) Respiratory responses to long-term temperature exposure in the box turtle, Terrapene ornata. J Comp Physiol B 131:353–359

    Article  Google Scholar 

  • Gutzke WHN, Packard GC (1987) Influence of the hydric and thermal environments on eggs and hatchlings of bull snakes (Pituophis melanoleucus). Physiol Zool 60:9–17

    Google Scholar 

  • Hicks JW, Wood SC (1985) Temperature regulation in lizards: effects of hypoxia. Am J Physiol Regul Integr Comp 248:R595–R600

    CAS  Google Scholar 

  • Jackson DC (1973) Ventilatory response to hypoxia in turtles at various temperatures. Respir Physiol 18:178–187

    Article  PubMed  CAS  Google Scholar 

  • Janzen FJ (1993) The influences of incubation temperature and family on eggs, embryos, and hatchlings of the smooth softshell turtle (Apalone mutica). Physiol Zool 66:349–373

    Google Scholar 

  • Joanen T (1969) Nesting ecology of alligators in Louisiana. In: Proceedings of the annual conference Southeast association game and fish communication 24:141–151

  • Kalman JM, Tonkin AM, Power JM (1995) Specific effects of zatebradine on sinus node function: suppression of automaticity, prolongation of sinoatrial conduction and pacemaker shift in the denervated canine heart. J Pharmacol Exp Ther 272:85–93

    PubMed  CAS  Google Scholar 

  • Kam YC (1993) Physiological effects of hypoxia on metabolism and growth of turtle embryos. Respir Physiol 92:127–138

    Article  PubMed  CAS  Google Scholar 

  • Lutz PL, Dunbar-Cooper A (1984) The nest environment of the American crocodile (Crocodylus acutus). Copeia 1:153–161

    Article  Google Scholar 

  • McIlhenny EA (1934) Notes on incubation and growth of alligators. Copeia 1934:80–88

    Article  Google Scholar 

  • Miller SC, Gillis TE, Wright PA (2011) The ontogeny of regulatory control of the rainbow trout (Oncorhynchus mykiss) heart and how this is influenced by chronic hypoxia exposure. J Exp Biol 214:2065–2072

    Article  PubMed  CAS  Google Scholar 

  • Nakahara T, Kawada T, Sugimachi M, Miyano H, Sato T, Shishido T, Yoshimura R et al (1998) Cholinesterase affects dynamic transduction properties from vagal stimulation to heart rate. Am J Physiol Regul Integr Comp 275:R541–R547

    CAS  Google Scholar 

  • Nechaeva MV (2011) Physiological responses to acute changes in temperature and oxygenation in bird and reptile embryos. Respir Physiol Neurobiol 178:108–117

    Article  PubMed  Google Scholar 

  • Nechaeva MV, Makarenko IG, Tsitrin EB, Zhdanova NP (2005) Physiological and morphological characteristics of the rhythmic contractions of the amnion in veiled chameleon (Chamaeleo calyptratus) embryogenesis. Comp Biochem Physiol A 140:19–28

    Article  Google Scholar 

  • Nechaeva MV, Vladimirova IG, Alekseeva TA (2007) Oxygen consumption as related to the development of the extraembryonic membranes and cardiovascular system in the European pond turtle (Emys orbicularis) embryogenesis. Comp Biochem Physiol A 148:599–606

    Article  Google Scholar 

  • Nielsen B (1962) On the regulation of respiration in reptiles II. The effect of hypoxia with and without moderate hypercapnia on the respiration and metabolism of lizards. J Exp Biol 39:107–117

    PubMed  CAS  Google Scholar 

  • Oppenheim RW, Levin HL (1975) Short-term changes in incubation temperature: behavioral and physiological effects in the chick embryo from 6 to 20 days. Dev Psychobiol 8:103–115

    Article  PubMed  CAS  Google Scholar 

  • Petersen AM, Gleeson TT, Scholnick DA (2003) The effect of oxygen and adenosine on lizard thermoregulation. Physiol Biochem Zool 76:339–347

    Article  PubMed  CAS  Google Scholar 

  • Pockett S, Macdonald JA (1986) Temperature dependence of neurotransmitter release in the Antarctic fish (Pagothenia borchgrevinki). Experientia 42:414–415

    Article  PubMed  CAS  Google Scholar 

  • Priede IG (1974) The effect of swimming activity and section of the vagus nerves on heart rate in rainbow trout. J Exp Biol 60:305–319

    PubMed  CAS  Google Scholar 

  • Seebacher F (2000) Heat transfer in a microvascular network: the effect of heart rate on heating and cooling in reptiles (Pogona barbata and Varanus varius). J Theor Biol 203:97–109

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Franklin CE (2003) Prostaglandins are important in thermoregulation of a reptile (Pogona vitticeps). Proc Biol Sci 270:S50–S53

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Franklin CE (2004) Integration of autonomic and local mechanisms in regulating cardiovascular responses to heating and cooling in a reptile (Crocodylus porosus). J Comp Physiol B 174:577–585

    Article  PubMed  Google Scholar 

  • Seebacher F, Franklin CE (2005) Physiological mechanisms of thermoregulation in reptiles: a review. J Comp Physiol B 175:533–541

    Article  PubMed  Google Scholar 

  • Seibert H (1979) Thermal adaptation of heart rate and its parasympathetic control in the European eel Anguilla anguilla (L.). Comp Biochem Physiol C 64:275–278

    Article  Google Scholar 

  • Snyder GK, Black CP, Birchard GF (1982) Development and metabolism during hypoxia in embryos of high altitude Anser indicus versus sea level Branta canadensis geese. Physiol Zool 55:113–123

    Google Scholar 

  • Sureau D, Lagardere JP, Pennec JP (1989) Heart rate and its cholinergic control in the sole (Solea vulgaris), acclimatized to different temperatures. Comp Biochem Physiol A 92:49–51

    Article  Google Scholar 

  • Takeuchi N (1958) The effect of temperature on the neuromuscular junction of the frog. Jpn J Physiol 8:391–404

    Article  PubMed  CAS  Google Scholar 

  • Tate KB, Eme J, Swart J, Conlon JM, Crossley DA II (2012) Effects of dehydration on cardiovascular development in the embryonic American alligator (Alligator mississippiensis). Comp Biochem Physiol A 162:252–258

    Article  CAS  Google Scholar 

  • Taylor EW, Ihmied YM (1995) Vagal and adrenergic tone on the heart of Xenopus laevis at different temperatures. J Therm Biol 20:55–59

    Article  Google Scholar 

  • Taylor EW, Short S, Butler PJ (1977) The role of the cardiac vagus in the response of the dogfish (Scyliorhinus canicula) to hypoxia. J Exp Biol 70:57–75

    Google Scholar 

  • Wood CM, Pieprzak P, Trott JN (1979) The influence of temperature and anaemia on the adrenergic and cholinergic mechanisms controlling heart rate in the rainbow trout. Can J Zool 57:2440–2447

    Article  CAS  Google Scholar 

  • Wood SC, Hicks JW, Dupré RK (1987) Hypoxic reptilians: blood gases, body temperature, and control of breathing. Am Zool 27:21–29

    Google Scholar 

Download references

Acknowledgments

Our work would not have been possible without help from Phillip “Scooter” Trosclair III and Dwayne LeJeune. We thank Kevin Tate and Zachary Kohl for assistance with embryo care and data collection. The National Science Foundation CAREER award IBN IOS-0845741 to DAC supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dane A. Crossley II.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, C., Eme, J., Elsey, R.M. et al. Chronic hypoxic incubation blunts thermally dependent cholinergic tone on the cardiovascular system in embryonic American alligator (Alligator mississippiensis). J Comp Physiol B 183, 947–957 (2013). https://doi.org/10.1007/s00360-013-0755-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0755-2

Keywords

Navigation