Skip to main content
Log in

Physiological mechanisms of thermoregulation in reptiles: a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TRP:

Transient receptor potential

NO:

Nitric oxide

NOS:

Nitric oxide synthase

COX:

Cyclooxygenase enzyme

CPT:

8-Cyclopentyltheophylline

References

  • Altimiras J, Franklin CE, Axelsson M (1998) Relationship between blood pressure and heart rate in the salt water crocodile Crocodylus porosus. J Exp Biol 201:2235–2242

    PubMed  CAS  Google Scholar 

  • Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Barros RCH, Branco LGS (1999) Role of central adenosine in the respiratory and thermoregulatory responses to hypoxia. Neuroreport 11:193–197

    Article  Google Scholar 

  • Bartholomew GA, Tucker VA (1963) Control of changes in body temperature, metabolism, and circulation by the agamid lizard, Amphibolurus barbatus. Physiol Zool 36:199–218

    Google Scholar 

  • Bernheim HA, Kluger MJ (1976) Fever and antipyresis in the lizard Dipsosaurus dorsalis. Am J Physiol 231:198–203

    PubMed  CAS  Google Scholar 

  • Bicego KC, Branco LGS (2002) Discrete electrolytic lesion of the preoptic area prevents LPS-induced behavioral fever in toads. J Exp Biol 205:3513–3518

    PubMed  Google Scholar 

  • Bicego KC, Steiner AA, Antunes-Rodrigues J, Branco LGS (2002) Indomethacin impairs LPS-induced behavioral fever in toads. J Appl Physiol 93:512–516

    PubMed  CAS  Google Scholar 

  • Boyen BD, Sylvia VL, Dean DD, Schwartz Z (2002) Membrane mediated signalling mechanisms are used differentially by metabolites of vitamin D3 in musculoskeletal cells. Steroids 67:421–427

    Article  PubMed  Google Scholar 

  • Brand MD, Couture P, Else PL, Withers KW, Hulbert AJ (1991) Evolution of energy metabolism. Biochem J 275:81–86

    PubMed  CAS  Google Scholar 

  • Brand MD, Couture P, Hulbert AJ (1994) Liposomes from mammalian liver mitochondria are more polyunsaturated and leakier to protons than those from reptiles. Comp Biochem Physiol 108B:181–188

    Article  CAS  Google Scholar 

  • Brand MD, Affouttit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Rad Biol Med 37:755–767

    Article  PubMed  CAS  Google Scholar 

  • Brown BR (2003) Sensing temperature without ion channels. Nature 421:494–495

    Google Scholar 

  • Brüning G, Wiese S, Mayer B (1994) Nitric oxide synthase in the brain of the turtle Pseudemys scripta elegans. J Comp Neurol 348:183–206

    Article  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen T, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci USA 93:15435–15439

    Article  PubMed  CAS  Google Scholar 

  • de Cock Buning T (1983) Thermal sensitivity as a specialization for prey capture and feeding in snakes. Amer Zool 23:363–375

    Google Scholar 

  • Cooper KE (2002) Molecular biology of thermoregulation. Some historical perspectives on thermoregulation. J Appl Physiol 92:1717–1724

    PubMed  CAS  Google Scholar 

  • Cothran ML, Hutchison VH (1979) Effects of melatonin on thermal selection by Crotaphytus collaris (Squamata: Iguanidae). Comp Biochem Physiol A 63:461–466

    Article  Google Scholar 

  • Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83:261–296

    Google Scholar 

  • DiBona GF (2003) Thermoregulation. Am J Physiol 284(2):R277–R279

    CAS  Google Scholar 

  • Dzialowski EM, O’Connor MP (2001) Physiological control of warming and cooling during simulated shuttling and basking in lizards. Physiol Biochem Zool 74:679–693

    Article  PubMed  CAS  Google Scholar 

  • Dzialowski EM, O’Connor MP (2004) Importance of the limbs in the physiological control of heat exchange in Iguana iguana and Sceloporus undulatus. J Therm Biol 29:299–305

    Article  Google Scholar 

  • Else PL, Hulbert AJ (1981) Comparisons of the “mammal machine” and the “reptile machine”: energy production. Am J Physiol 240:R3–R9

    PubMed  CAS  Google Scholar 

  • Else PL, Hulbert AJ (1985) An allometric comparison of the mitochondria of mammalian and reptilian tissues: the implications for the evolution of endothermy. J Comp Physiol 156:3–11

    CAS  Google Scholar 

  • Else PL, Hulbert AJ (2003) Membranes as metabolic pacemakers. Clin Exp Parmacol Physiol 30:559–564

    Article  CAS  Google Scholar 

  • Erskine DJ, Hutchison VH (1981) Melatonin and behavioral thermoregulation in the turtle, Terrapene carolina triunguis. Physiol Behav 26:991–994

    Article  PubMed  CAS  Google Scholar 

  • Ewert MA, Nelson CE (2003) Metabolic heating of embryos and sex determination in the American alligator, alligator mississippiensis. J Therm Biol 28:159–165

    Article  Google Scholar 

  • Feldberg W, Saxena PN (1971) Further studies on prostaglandin E 1 fever in cats. J Physiol 219:739–745

    PubMed  CAS  Google Scholar 

  • Ferguson GW, Gehrmann WH, Karsten KB, Hammack SH, McRae M, Chen TC, Lung NP, Holick MF (2003) Do panther chameleons bask to regulate endogenous vitamin D3 production? Physiol Biochem Zool 76:52–59

    Article  PubMed  CAS  Google Scholar 

  • Ferguson GW, Gehrmann WH, Karsten KB, Landwer AJ, Carman EN, Chen TC, Holick MF (2005) Ultraviolet exposure and vitamin D synthesis in a sun-dwelling and a shade-dwelling species of anolis: are there adaptations for lower ultraviolet B and dietary vitamin D-3 availability in the shade? Physiol Biochem Zool 78:193–200

    Article  PubMed  CAS  Google Scholar 

  • Franklin CE, Seebacher F (2003) The effect of heat transfer mode on heart rate responses and hysteresis during heating and cooling in the estuarine crocodile Crocodylus porosus. J Exp Biol 206:1143–1151

    Article  PubMed  Google Scholar 

  • Goudkamp JE, Seebacher F, Ahern M, Franklin CE (2004) Physiological thermoregulation in a crustacean? Heart rate hysteresis in the freshwater crayfish Cherax destructor. Comp Biochem Physiol A 138:399–403

    Google Scholar 

  • Grigg GC, Alchin J (1976) The role of the cardiovascular system in thermoregulation of Crocodylus johnstoni. Physiol Zool 49:24–36

    Google Scholar 

  • Grigg GC, Drane CR, Courtice GP (1979) Time constants of heating and cooling in the eastern water dragon, Physignathus lesueruii, and some generalizations about heating and cooling in reptiles. J Therm Biol 4:95–103

    Article  Google Scholar 

  • Grigg GC, Seebacher F (1999) Field test of a paradigm: hysteresis of heart rate in thermoregulation by a free-ranging lizard (Pogona barbata). Proc Roy Soc Lond B 266:1291–1297

    Article  CAS  Google Scholar 

  • Guderley H (2004) Metabolic responses to low temperature in fish muscle. Biol Rev 79:409–427

    Article  PubMed  Google Scholar 

  • Guderley H, St. Pierre J (2002) Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change. J Exp Biol 205:2237–2249

    PubMed  Google Scholar 

  • Gvozdik L (2002) To heat or to save time? Thermoregulation in the lizard Zootoca vivipara (Squamata: lacertidae) in different thermal environments along an altitudinal gradient. Can J Zool 80:479–492

    Article  Google Scholar 

  • Hertz PE (1992) Temperature regulation in Puerto Rican Anolis lizards: a field test using null hypotheses. Ecology 73:1405–1417

    Article  Google Scholar 

  • Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 142:796–818

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199:257–274

    Article  PubMed  CAS  Google Scholar 

  • Johnston IA, Temple GK (2002) Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol 205:2305–2322

    PubMed  Google Scholar 

  • Jones BS, Lynn WF, Stone MO (2001) Thermal modeling of snake infrared reception: evidence for limited detection range. J Theor Biol 209:201–211

    Article  PubMed  CAS  Google Scholar 

  • Kabat AP, Rose RW, West AK (2004) Molecular identification of uncoupling proteins 2 and 3 in a carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii). Physiol Biochem Zool 77:109–115

    Article  PubMed  CAS  Google Scholar 

  • Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604:77–94

    Article  PubMed  CAS  Google Scholar 

  • Kauffman A, Cabrera A, Zucker I (2001) Energy intake and fur in summer- and winter-acclimated Siberian hamsters (Phodopus sungorus). Am J Physiol 281:R519–R527

    CAS  Google Scholar 

  • Krochmal AR, Bakken GS (2003) Thermoregulation is the pits: use of thermal radiation for retreat site selection by rattlesnakes. J Exp Biol 206:2539–2545

    Article  PubMed  Google Scholar 

  • Krochmal AR, Bakken GS, LaDuc TJ (2004) Heat in evolution’s kitchen: evolutionary perspectives on the functions and origin of the facial pit of pitvipers (Viperidae: Crotalinae). J Exp Biol 207:4231–4238

    Article  PubMed  Google Scholar 

  • Krotewicz M, Lewinski A (1994) Thyroid hormone secretion in male Wistar rats treated with melatonin and/or thyrotropin; dependence of effects on the used doses. Neuroendocrin Lett 16:263–268

    CAS  Google Scholar 

  • Kvadsheim PH, Aarseth JJ (2002) Thermal function of phocid seal fur. Mar Mamm Sci 18:952–962

    Article  Google Scholar 

  • Lutterschmidt DI, Lutterschmidt WI, Hutchison VH (1997) Melatonin and chlorpromazine: thermal selection and metabolic rate in the bullsnake, Pituophis melanoleucus. Comp Biochem Physiol C 118:271–277

    Article  Google Scholar 

  • Lutterschmidt DI, Lutterschmidt WI, Ford NB, Hutchison VH (2002) Behavioral thermoregulation and the role of melatonin in a nocturnal snake. Horm Behav 41:41–50

    Article  PubMed  CAS  Google Scholar 

  • Madden CJ, Morrison SF (2004) Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandin-evoked thermogenesis in brown adipose tissue. Am J Physiol 286:R320–R325

    CAS  Google Scholar 

  • Mathai ML, Arnold I, Febbraio MA, McKinley MJ (2004) Central blockade of nitric oxide induces hyperthermia that is prevented by indomethacin in rats. J Therm Biol 29:401–405

    Article  CAS  Google Scholar 

  • Mendoça MT, Tousignant AJ, Crews D (1995) Seasonal changes and annual variability in daily plasma melatonin in the red-sided garter snake (Thamnophis sirtalis parietalis). Gen Comp Endocrinol 100:226–237

    Article  PubMed  Google Scholar 

  • Moiseenkova V, Bell B, Motamedi M, Wozniak E, Christensen B (2003) Am J Physiol 284:R598–R606

    CAS  Google Scholar 

  • Moon C (2004) An investigation of the effects of ruthenium red, nitric oxide and endothelin-1 on infrared receptor activity in a crotaline snake. Neuroscience 124:913–918

    Article  PubMed  CAS  Google Scholar 

  • Moon C, Terashima S, Shin T (2003) Immunohistochemical localization of the delta subspecies of protein kinase C in the trigeminal sensory system of Trimeresurus flavoviridis, an infrared sensitive snake. Neurosci Lett 338:233–236

    Article  PubMed  CAS  Google Scholar 

  • Morgareidge KR, White FN (1972) Cutaneous vascular changes during heating and cooling in the Galapagos marine iguana. Nature 223:587–591

    Article  Google Scholar 

  • O’Connor MP (1999) Physiological and ecological implications of a simple model of heating and cooling in reptiles. J Therm Biol 24:113–136

    Article  Google Scholar 

  • Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nature Rev Neurosci 4:529–539

    Article  CAS  Google Scholar 

  • Petersen AM, Gleeson TT, Scholnick DA (2003) The effect of oxygen and adenosine on lizard thermoregulation. Physiol Biochem Zool 76:339–347

    Article  PubMed  CAS  Google Scholar 

  • Raimbault S, Dridi S, Denjean F, Lachuer J, Couplan E, Bouillaud F, Bordas A, Duchamp C, Taouis M, Ricquier D (2001) An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds. Biochem J 353:441–444

    Article  PubMed  CAS  Google Scholar 

  • Romanovsky AA, Ivanov AI, Shimansky YP (2002) Ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92:2667–2679

    PubMed  Google Scholar 

  • Sakamoto K, Liu C, Tosini G (2004) Circadian rhythms in the retina of rats with photoreceptor degeneration. J Neurochem 90:1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D (1997) Regulation of cyclooxygenase enzymes by nitric oxide. Cell Mol Life Sci 53:576–582

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F (1999) Behavioural postures and the rate of body temperature change in wild freshwater crocodiles, Crocodylus johnstoni. Physiol Biochem Zool 72:57–63

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F (2000) Heat transfer in a microvascular network: the effect of heart rate on heating and cooling in reptiles (Pogona barbata and Varanus varius). J Theor Biol 203:97–109

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Franklin CE (2001) Control of heart rate during thermoregulation in the heliothermic lizard, Pogona barbata: importance of cholinergic and adrenergic mechanisms. J Exp Biol 204:4361–4366

    PubMed  CAS  Google Scholar 

  • Seebacher F, Franklin CE (2003) Prostaglandins are important in thermoregulation of a lizard (Pogona vitticeps). Proc Roy Soc Lond B (Suppl) 270:S50–S53

    Article  CAS  Google Scholar 

  • Seebacher F, Franklin CE (2004a) Integration of autonomic and local mechanisms in regulating cardiovascular responses to heating and cooling in a reptile (Crocodylus porosus). J Comp Physiol B 174:577–585

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Franklin CE (2004b) Cardiovascular mechanisms during thermoregulation in reptiles. Int Congr Ser 1275:242–249

    Article  Google Scholar 

  • Seebacher F, Grigg GC (2001) Changes in heart rate are important for thermoregulation in the varanid lizard, Varanus varius. J Comp Physiol B 171:395–400

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Shine R (2004) Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method. Physiol Biochem Zool 77:688–695

    Article  PubMed  Google Scholar 

  • Seebacher F, Grigg GC, Beard LA (1999) Crocodiles as dinosaurs: behavioural thermoregulation in very large ectotherms leads to high and stable body temperatures. J Exp Biol 202:77–86

    PubMed  Google Scholar 

  • Seebacher F, Elsey RM, Trosclair PL III (2003) Body temperature null-distributions in large reptiles: seasonal thermoregulation in the American alligator (Alligator mississippiensis). Physiol Biochem Zool 76:348–359

    Article  PubMed  Google Scholar 

  • Shine R, Sun L (2002) Arboreal ambush site selection by pit-vipers Gloydius shedaoensis. Anim Behav 63:565–576

    Article  Google Scholar 

  • Sievert LM, Poore JL (1995) Melatonin does not influence thermoregulatory behavior in Bufo americanus and Bufo marinus. Copeia 1995:490–494

    Article  Google Scholar 

  • Smeets WJ, Alonso JR, Gonzalez A (1997) Distribution of NADPH-diaphorase and nitric oxide synthase in relation to catecholaminergic neuronal structures in the brain of the lizard Gekko gecko. J Comp Neurol 377:121–141

    Article  PubMed  CAS  Google Scholar 

  • Soares D (2002) An ancient sensory organ in crocodilians. Nature 417:241–242

    Article  PubMed  CAS  Google Scholar 

  • Steiner AA, Branco LSG (2002) Hypoxia-induced anapyrexia: implications and putative mediators. Annu Rev Physiol 64:263–288

    Article  PubMed  CAS  Google Scholar 

  • Tosini G, Menaker M (1996) The pineal complex and melatonin affect the expression of the daily rhythm of behavioral thermoregulation in the green iguana. J Comp Physiol A 179:135–142

    Article  PubMed  CAS  Google Scholar 

  • Tosini G, Bertolucci C, Foà A (2001) The circadian system of reptiles: a multioscillatory and multiphotoreceptive system. Physiol Behav 72:461–471

    Article  PubMed  CAS  Google Scholar 

  • Turner N, Else PL, Hulbert AJ (2003) Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: implications for disease and metabolism. Naturwiss 90:521–523

    Article  PubMed  CAS  Google Scholar 

  • Viana F, de la Pena E, Belmonte C (2002) Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 5:254–260

    Article  PubMed  CAS  Google Scholar 

  • Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, Patapoutian A, Jegla T (2003) Opposite thermosensor in fruitfly and mouse. Nature 423:822–823

    Article  PubMed  CAS  Google Scholar 

  • Wagner EL, Gleeson TT (1997) Postexercise thermoregulatory behavior and recovery from exercise in desert iguanas. Physiol Behav 61:175–180

    Article  PubMed  CAS  Google Scholar 

  • Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24:6410–6415

    Article  PubMed  CAS  Google Scholar 

  • Woods HA, Harrison JF (2002) Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive? Evolution 56:1863–1866

    PubMed  Google Scholar 

  • Wright ML, Pikula A, Cykowski LJ, Kuliga K (1996) Effect of melatonin on the anuran thyroid gland: follicle cell proliferation, morphometry, and subsequent thyroid hormone secretion in vivo after melatonin treatment in vivo. Gen Comp Endocrinol 103:182–191

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Hulbert AJ, Storlien LH, Else PL (2004) Membrane lipids and sodium pumps of cattle and crocodiles: an experimental test of the membrane pacemaker theory of metabolism. Am J Physiol 287:R633–R641

    Article  CAS  Google Scholar 

  • Zaar M, Larsen E, Wang T (2004) Hysteresis of heart rate and heat exchange of fasting and postprandial savannah monitor lizards (Varanus exanthematicus). Comp Biochem Physiol 137A:675–682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an Australian Research Council Discovery grant to F.S. and C.E.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Seebacher.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seebacher, F., Franklin, C.E. Physiological mechanisms of thermoregulation in reptiles: a review. J Comp Physiol B 175, 533–541 (2005). https://doi.org/10.1007/s00360-005-0007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0007-1

Keywords

Navigation