Skip to main content
Log in

Hypoxic incubation at 50% of atmospheric levels shifts the cardiovascular response to acute hypoxia in American alligators, Alligator mississippiensis

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We designed a series of studies to investigate whether hypoxia (10% O2) from 20% of incubation to hatching, or from 20 to 50% of incubation, affects cardiovascular function when juvenile American alligators reached an age of 4–5 years compared to juveniles that were incubated in 21% O2. At this age, we measured blood flows in all the major arteries as well as heart rate, blood pressure, and blood gases in animals in normoxia and acute hypoxia (10% O2 and 5% O2). In all three groups, exposure to acute hypoxia of 10% O2 caused a decrease in blood O2 concentration and an increase in heart rate in 4–5-year-old animals, with limited effects on blood flow in the major outflow vessels of the heart. In response to more acute hypoxia (5% O2), where blood O2 concentration decreased even further, we measured increased heart rate and blood flow in the right aorta, subclavian artery, carotid artery, and pulmonary artery; however, blood flow in the left aorta either decreased or did not change. Embryonic exposure to hypoxia increased the threshold for eliciting an increase in heart rate indicative of a decrease in sensitivity. Alligators that had been incubated in hypoxia also had higher arterial PCO2 values in normoxia, suggesting a reduction in ventilation relative to metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman RA (1980) Physiological and ecological aspects of gas exchange by sea turtle eggs. Am Zool 20:575–583

    Article  Google Scholar 

  • Ackerman RA (1981) Growth and gas exchange of embryonic sea turtles (Chelonia carretta). Copeia 4:757–765

  • Alderman SL, Crossley DA II, Elsey RM, Gillis TE (2019) Hypoxia-induced reprogramming of the cardiac phenotype in American alligators (Alligator mississippiensis) revealed by quantitative proteomics. Sci Rep 9:8592

    Article  PubMed  PubMed Central  Google Scholar 

  • Alderman SL, Crossley DA II, Elsey RM, Gillis TE (2020) Growing up gator: a proteomic perspective on cardiac maturation in an oviparous reptile, the American alligator (Alligator mississippiensis). J Comp Physiol B 190:243–252

    Article  CAS  PubMed  Google Scholar 

  • Axelsson M, Franklin CE (2001) The calibre of the foramen of Panizza in Crocodylus porosus is variable and under adrenergic control. J Comp Physiol B 171:341–346

    Article  CAS  PubMed  Google Scholar 

  • Bateson P, Gluckman P, Hanson M (2014) The biology of developmental plasticity and the predictive adaptive response hypothesis. J Physiol 592:2357–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bavis RW (2005) Developmental plasticity of the hypoxic ventilatory response after perinatal hyperoxia and hypoxia. Respir Physiol Neurobiol 149:287–299

    Article  CAS  PubMed  Google Scholar 

  • Bavis RW, Kilgore DL Jr (2001) Effects of embryonic CO2 exposure on the adult ventilatory response in quail: does gender matter? Respir Physiol 126:183–199

    Article  CAS  PubMed  Google Scholar 

  • Bavis RW, MacFarlane PM (2017) Developmental plasticity in the neural control of breathing. Exp Neurol 287:176–191

    Article  PubMed  Google Scholar 

  • Branco LGS, Wood SC (1993) Effect of temperature on central chemical control of ventilation in the alligator Alligator mississippiensis. J Exp Biol 179:261–272

    Article  CAS  PubMed  Google Scholar 

  • Busk M, Overgaard J, Hicks JW, Bennett AF, Wang T (2000) Effects of feeding on arterial blood gases in the American alligator Alligator mississippiensis. J Exp Biol 203:3117–3124

    Article  CAS  PubMed  Google Scholar 

  • Cadiz L, Servili A, Quazuguel P, Madec L, Zambonino-Infante J-L, Mazurais D (2017) Early exposure to chronic hypoxia induces short and long-term regulation of hemoglobin gene expression in European sea bass (Dicentrarchus labrax). J Exp Biol 220:3119–3126

    PubMed  Google Scholar 

  • Cameron JN (1971) Rapid method for determination of total carbon dioxide in small blood samples. J Appl Physiol 31:632–634

    Article  CAS  PubMed  Google Scholar 

  • Campbell HA, Sullivan S, Read MA, Gordos MA, Franklin CE (2010) Ecological and physiological determinants of dive duration in the freshwater crocodile. Funct Ecol 24:103–111

    Article  Google Scholar 

  • Conner JL, Crossley JL, Elsey R, Nelson D, Wang T, Crossley DA II (2019) Does the left aorta provide proton-rich blood to the gut when crocodilians digest a meal? J Exp Biol 222:1–5

    Google Scholar 

  • Crossley DA II, Altimiras J (2005) Cardiovascular development in embryos of the American alligator Alligator mississippiensis: effects of chronic and acute hypoxia. J Exp Biol 208:31–39

    Article  PubMed  Google Scholar 

  • Crossley DA II, Burggren WW, Altimiras J (2003a) Cardiovascular regulation during hypoxia in embryos of the domestic chicken Gallus gallus. Am J Physiol 284:R219–R226

    CAS  Google Scholar 

  • Crossley DA II, Hicks JW, Altimiras J (2003b) Ontogeny of baroreflex control in the American alligator Alligator mississippiensis. J Exp Biol 206:2895–2902

    Article  PubMed  Google Scholar 

  • Crossley DA II, Tate KB, Elfwing M, Eme J (2012) Chronic developmental hypoxia alters the cardiovascular baroreflex phenotype of embryonic common snapping turtles. FASEB J 26

  • Crossley DA II, Ling R, Nelson D, Gillium T, Conner J, Hapgood J, Elsey RM, Eme J (2017) Metabolic responses to chronic hypoxic incubation in embryonic American alligators (Alligator mississippiensis). Comp Biochem Physiol 203:77–82

    Article  CAS  Google Scholar 

  • Crossley JL, Lawrence T, Tull M, Elsey RM, Wang T, Crossley DA II (2022) Developmental oxygen preadapts ventricular function of juvenile American alligators, Alligator mississippiensis. Am J Physiol 323:R739–R748

    CAS  Google Scholar 

  • Davis L, Roullet JB, Thornburg KL, Shokry M, Hohime AR, Giraud GD (2003) Augmentation of coronary conductance in adult sheep made anaemic during fetal life. J Physiol 547:53–59

    Article  CAS  PubMed  Google Scholar 

  • Douse MA, Mitchell GS (1991) Time course of temperature effects on arterial acid-base status in Alligator mississippiensis. Respir Physiol 83:87–102

    Article  CAS  PubMed  Google Scholar 

  • Eme J, Altimiras J, Hicks JW, Crossley DA II (2011a) Hypoxic alligator embryos: chronic hypoxia, catecholamine levels and autonomic responses of in ovo alligators. Comp Biochem Physiol A Mol Integr Physiol 160:412–420

    Article  CAS  PubMed  Google Scholar 

  • Eme J, Crossley DA II, Hicks JW (2011b) Role of the left aortic arch and blood flows in embryonic American alligator (Alligator mississippiensis). J Comp Physiol B 181:391–401

    Article  PubMed  Google Scholar 

  • Eme J, Hicks JW, Crossley DA II (2011c) Chronic hypoxic incubation blunts a cardiovascular reflex loop in embryonic American alligator (Alligator mississippiensis). J Comp Physiol B 181:981–990

    Article  CAS  PubMed  Google Scholar 

  • Eme J, Rhen T, Tate KB, Gruchalla K, Kohl ZF, Slay CE, Crossley DA II (2013) Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression. Am J Physiol 304:R966-979

    CAS  Google Scholar 

  • Eme J, Rhen T, Crossley DA II (2014) Adjustments in cholinergic, adrenergic and purinergic control of cardiovascular function in snapping turtle embryos (Chelydra serpentina) incubated in chronic hypoxia. J Comp Physiol B 184:891–902

    Article  CAS  PubMed  Google Scholar 

  • Ferguson MWJ (1985) Reproductive biology and embryology of the crocodilians. In: Gans C, Billett F, Maderson PFA (eds) Biology of the reptilia. Development A, vol 14. Wiley, New York, pp 329–491

  • Findsen A, Crossley DA II, Wang T (2018) Feeding alters blood flow patterns in the American alligator (Alligator mississippiensis). Comp Biochem Physiol A: Mol Integr Physiol 215:1–5

    Article  CAS  PubMed  Google Scholar 

  • Galli GL, Crossley J, Elsey RM, Dzialowski EM, Shiels HA, Crossley DA II (2016) Developmental plasticity of mitochondrial function in American alligators, Alligator mississippiensis. Am J Physiol 311:R1164–R1172

    Google Scholar 

  • Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA II (2023) Effects of developmental hypoxia on the vertebrate cardiovascular system. Physiology (bethesda). https://doi.org/10.1152/physiol.00022.2022

    Article  PubMed  Google Scholar 

  • Grigg GC, Johansen K (1987) Cardiovascular dynamics in Crocodylus porosus breathing air and during voluntary aerobic dives. J Comp Physiol B 157:381–392

    Article  Google Scholar 

  • Hartzler LK, Munns SL, Bennett AF, Hicks JW (2006) Recovery from an activity-induced metabolic acidosis in the American alligator, Alligator mississippiensis. Comp Biochem Physiol A 143:368–374

    Article  CAS  Google Scholar 

  • Jensen FB, Wang T, Jones DR, Brahm J (1998) Carbon dioxide transport in alligator blood and its erythrocyte permeability to anions and water. Am J Physiol Regul Integr Comp Physiol 274:R661

  • Jones DR, Shelton G (1993) The physiology of the alligator heart: left aortic flow patterns and right-to-left shunts. J Exp Biol 176:247–270

    Article  Google Scholar 

  • Jonker S, Davis LE, van der Bilt JD, Hadder B, Hohimer AR, Giraud GD, Thornburg KL (2003) Anaemia stimulates aquaporin 1 expression in the fetal sheep heart. Exp Physiol 88:691–698

    Article  CAS  PubMed  Google Scholar 

  • Jonker SS, Giraud GD, Espinoza HM, Davis EN, Crossley DA II (2015) Effects of chronic hypoxia on cardiac function measured by pressure-volume catheter in fetal chickens. Am J Physiol 308:R680–R689

    CAS  Google Scholar 

  • Joyce W, Elsey RM, Wang T, Crossley DA II (2018a) Maximum heart rate does not limit cardiac output at rest or during exercise in the American alligator (Alligator mississippiensis). Am J Physiol 315:R296–R302

    CAS  Google Scholar 

  • Joyce W, Miller TE, Elsey RM, Wang T, Crossley DA II (2018b) The effects of embryonic hypoxic programming on cardiovascular function and autonomic regulation in the American alligator (Alligator mississippiensis) at rest and during swimming. J Comp Physiol B 188:967–976

    Article  CAS  PubMed  Google Scholar 

  • Klok CJ, Hubb AJ, Harrison JF (2009) Single and multigenerational responses of body mass to atmospheric oxygen concentrations in Drosophila melanogaster: evidence for roles of plasticity and evolution. J Evol Biol 22:2496–2504

    Article  CAS  PubMed  Google Scholar 

  • Lutz PL, Dunbar-Cooper A (1984) The nest environment of the American crocodile (Crocodylus acutus). Copeia 1984:153–161

    Article  Google Scholar 

  • Malvin GM, Hicks JW, Greene ER (1995) Central vascular flow patterns in the alligator Alligator mississipiensis. Am J Physiol 269:R1133-1139

    CAS  PubMed  Google Scholar 

  • Marks C, Eme J, Elsey RM, Crossley DA II (2013) Chronic hypoxic incubation blunts thermally dependent cholinergic tone on the cardiovascular system in embryonic American alligator (Alligator mississippiensis). J Comp Physiol B 183:947–957

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Yu AY, Jiang BH, Davis L, Kimberly D, Hohime AR, Semenza GL (1998) Cardiac hypertrophy in chronically anemic fetal sheep: Increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am J Obst Gynecol 178:527–534

    Article  CAS  Google Scholar 

  • Milsom WK, Kinkead R, Hedrick M, Gilmour K, Perry SF, Gargaglioni L, Wang T (2022) Control of breathing in ectothermic vertebrates. Compr Physiol 12:3869–3988

    Article  PubMed  Google Scholar 

  • Moore FB, Hosey M, Bagatto B (2006) Cardiovascular system in larval zebrafish responds to developmental hypoxia in a family specific manner. Front Zool 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogge JR, Warkentin KM (2008) External gills and adaptive embryo behavior facilitate synchronous development and hatching plasticity under respiratory constraint. J Exp Biol 211:3627

    Article  PubMed  Google Scholar 

  • Ruhr IM, McCourty H, Bajjig A, Crossley DA II, Shiels HA, Galli GLJ (2019) Developmental plasticity of cardiac anoxia-tolerance in juvenile common snapping turtles (Chelydra serpentina). Proc R Soc B 286:20191072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shartau RB, Crossley DA II, Kohl ZF, Brauner CJ (2016) Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges. J Exp Biol 219:1994–2002

    PubMed  Google Scholar 

  • Shelton G, Jones DR (1991) The physiology of the alligator heart: the cardiac cycle. J Exp Biol 158:539–564

    Article  Google Scholar 

  • Smith B, Crossley JL, Elsey RM, Hicks JW, Crossley DA II (2019) Embryonic developmental oxygen preconditions cardiovascular functional response to acute hypoxic exposure and maximal beta-adrenergic stimulation of anesthetized juvenile American alligators (Alligator mississippiensis). J Exp Biol 222(Pt 21):jeb205419

    Article  PubMed  Google Scholar 

  • Tate KB, Slay CE, Hicks JW, Crossley DA II (2012) Chronic hypoxic incubation stress and the plasticity of humoral regulation of cardiovascular function in the American alligator (Alligator mississippiensis). Integr Comp Biol 52:E173–E173

    Google Scholar 

  • Tate KB, Kohl ZF, Eme J, Rhen T, Crossley DA II (2015) Critical windows of cardiovascular susceptibility to developmental hypoxia in common snapping turtle (Chelydra serpentina) embryos. Physiol Biochem Zool 88:103–115

    Article  PubMed  Google Scholar 

  • Tate KB, Rhen T, Eme J, Kohl ZF, Crossley J, Elsey RM, Crossley DA II (2016a) Periods of cardiovascular susceptibility to hypoxia in embryonic American alligators (Alligator mississippiensis). Am J PhysioI 310:R1267–R1278

    Google Scholar 

  • Tate KB, Rhen T, Eme J, Kohl ZF, Crossley J, Elsey RM, Crossley DA II (2016b) Periods of cardiovascular susceptibility to hypoxia in embryonic American alligators (Alligator mississippiensis). Am J Physiol 310:R1267-1278

    Google Scholar 

  • Tucker VA (1967) Methods for oxygen content and dissociation curves on microlitre blood samples. J Appl Physiol 23:410–414

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Warburton SJ (1995) Breathing pattern and cost of ventilation in the American alligator. Respir Physiol 102:29–37

    Article  CAS  PubMed  Google Scholar 

  • Wearing OH, Conner J, Nelson D, Crossley J, Crossley DA II (2017) Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles (Chelydra serpentina). J Exp Biol 220:2589–2597

    PubMed  Google Scholar 

  • White FN (1970) Central vascular shunts and their control in reptiles. Fed Proc 29:1149–1153

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tiffany Millar for her valuable aid in managing the alligators used in this study. We also thank Dr. William Joyce for his comments on the final manuscript. Finally, we thank Kaitlin Steiger for her aid in carrying out portions of the study. Funding for the project was provided to DAC II by the National Science Foundation IOS 1755187.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors designed the experiments. JLC, DAC II, TL and MT conducted the studies. DAC II analyzed the data. JLC and DAC II drafted the manuscript, which was subsequently edited by all of the other authors. All of the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Dane A. Crossley II.

Additional information

Communicated by P. Withers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crossley, J.L., Smith, B., Tull, M. et al. Hypoxic incubation at 50% of atmospheric levels shifts the cardiovascular response to acute hypoxia in American alligators, Alligator mississippiensis. J Comp Physiol B 193, 545–556 (2023). https://doi.org/10.1007/s00360-023-01510-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-023-01510-8

Keywords

Navigation