Skip to main content
Log in

Temperature acclimation has no effect on ryanodine receptor expression or subcellular localization in rainbow trout heart

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In cardiomyocytes, ryanodine receptors (RYRs) mediate Ca2+-induced Ca2+-release (CICR) from the sarcoplasmic reticulum (SR) during excitation–contraction (e–c) coupling. In rainbow trout heart, the relative importance of CICR increases with cold-acclimation. Thus, the aim of this study was to investigate the effect of temperature acclimation (4, 11 and 18°C) on RYR intracellular localization and expression density. We used immunocytochemistry to assess intracellular localization in ventricular myocytes and Western blotting to assess RYR expression in both atrial and ventricular tissue. In ventricular myocytes, RYRs were localized peripherally in transverse bands aligning with sarcomeric m-lines and centrally around mitochondria and the nucleus. Localization did not change with temperature acclimation. RYR expression was also unaffected by temperature acclimation. The localization of RYRs at the m-line is similar to neonatal mammalian cardiomyocytes. We suggest this positioning is indicative of myocytes which rely predominantly on transsarcolemmal Ca2+-influx, rather than CICR, during e–c coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CICR:

Ca2+-induced Ca2+-release

ICa :

L-type Ca2+-current

INCX rev :

Reverse-mode NCX current

NCX:

Na+/Ca2+-exchange

RYR:

Ryanodine receptor

SDS:

Sodium dodecyl sulphate

SR:

Sarcoplasmic reticulum

TTBS:

Tween tris-buffered saline

References

  • Aho E, Vornanen M (1999) Contractile properties of atrial and ventricular myocardium of the heart of rainbow trout Oncorhynchus mykiss: effects of thermal acclimation. J Exp Biol 202:2663–2677

    PubMed  Google Scholar 

  • Bassani JW, Yuan W, Bers DM (1995) Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol 268:C1313–C1319

    PubMed  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  • Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276:21482–21488

    Article  PubMed  CAS  Google Scholar 

  • Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS (2005) Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717:1–10

    Article  PubMed  CAS  Google Scholar 

  • Birkedal R, Shiels HA (2007) High [Na+]i in cardiomyocytes from rainbow trout. Am J Physiol Regul Integr Comp Physiol 293:R861–R866

    PubMed  CAS  Google Scholar 

  • Birkedal R, Shiels HA, Vendelin M (2006) Three-dimensional mitochondrial arrangement in ventricular myocytes: from chaos to order. Am J Physiol Cell Physiol 291:C1148–C1158

    Article  PubMed  CAS  Google Scholar 

  • Bootman MD, Higazi DR, Coombes S, Roderick HL (2006) Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci 119:3915–3925

    Article  PubMed  CAS  Google Scholar 

  • Bowler K, Tirri R (1990) Temperature dependence of the heart isolated from the cold or warm acclimated perch (Perca fluviatilis). Comp Biochem Physiol A 96:177–180

    Article  Google Scholar 

  • Chugun A, Taniguchi K, Murayama T, Uchide T, Hara Y, Temma K, Ogawa Y, Akera T (2003) Subcellular distribution of ryanodine receptors in the cardiac muscle of carp (Cyprinus carpio). Am J Physiol Regul Integr Comp Physiol 285:R601–R609

    PubMed  Google Scholar 

  • Dan P, Lin E, Huang J, Biln P, Tibbits GF (2007) Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development. Biophys J 93:2504–2518

    Article  PubMed  CAS  Google Scholar 

  • Di Maio A, Block BA (2008) Ultrastructure of the sarcoplasmic reticulum in cardiac myocytes from Pacific bluefin tuna. Cell Tissue Res 334:121–134

    Article  PubMed  Google Scholar 

  • el Sayed MF, Gesser H (1989) Sarcoplasmic reticulum, potassium, and cardiac force in rainbow trout and plaice. Am J Physiol 257:R599–R604

    PubMed  CAS  Google Scholar 

  • Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:247–289

    Article  PubMed  CAS  Google Scholar 

  • Galli GL, Taylor EW, Shiels HA (2006) Calcium flux in turtle ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 291:R1781–R1789

    PubMed  CAS  Google Scholar 

  • Gamperl AK, Farrell AP (2004) Cardiac plasticity in fishes: environmental influences and intraspecific differences. J Exp Biol 207:2539–2550

    Article  PubMed  CAS  Google Scholar 

  • Gesser H (1996) Cardiac force-interval relationship, adrenaline and sarcoplasmic reticulum in rainbow trout. J Comp Physiol B 166:278–285

    Article  CAS  Google Scholar 

  • Hove-Madsen L (1992) The influence of temperature on ryanodine sensitivity and the force-frequency relationship in the myocardium of rainbow trout. J Exp Biol 167:47–60

    PubMed  CAS  Google Scholar 

  • Hove-Madsen L, Tort L (1998) L-type Ca2+ current and excitation-contraction coupling in single atrial myocytes from rainbow trout. Am J Physiol 275:R2061–R2069

    PubMed  CAS  Google Scholar 

  • Hove-Madsen L, Llach A, Tort L (1999) Quantification of calcium release from the sarcoplasmic reticulum in rainbow trout atrial myocytes. Pflugers Arch 438:545–552

    Article  PubMed  CAS  Google Scholar 

  • Hove-Madsen L, Llach A, Tibbits GF, Tort L (2003) Triggering of sarcoplasmic reticulum Ca2+ release and contraction by reverse mode Na+/Ca2+ exchange in trout atrial myocytes. Am J Physiol Regul Integr Comp Physiol 284:R1330–R1339

    PubMed  CAS  Google Scholar 

  • Huang J, Hove-Madsen L, Tibbits GF (2008) Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes. Am J Physiol Cell Physiol 294:C516–C525

    Article  PubMed  CAS  Google Scholar 

  • Keen JE, Vianzon D-M, Farrell AP, Tibbits G (1994) Effect of temperature and temperature acclimation on the ryanodine sensitivity of the trout myocardium. J Comp Physiol B 164:438–443

    Article  CAS  Google Scholar 

  • Lukyanenko V, Ziman A, Lukyanenko A, Salnikov V, Lederer WJ (2007) Functional groups of ryanodine receptors in rat ventricular cells. J Physiol 583:251–269

    Article  PubMed  CAS  Google Scholar 

  • Møller-Nielsen T, Gesser H (1992) Sarcoplasmic reticulum and excitation–contraction coupling at 20 and 10°C in rainbow trout myocardium. J Comp Physiol B 162:526–534

    Article  Google Scholar 

  • Philipson KD, Longoni S, Ward R (1988) Purification of the cardiac Na+–Ca2+ exchange protein. Biochim Biophys Acta 945(2):298–306

    Article  PubMed  CAS  Google Scholar 

  • Santer RM (1974) The organization of the sarcoplasmic reticulum in teleost ventricular myocardial cells. Cell Tissue Res 151:395–402

    Article  PubMed  CAS  Google Scholar 

  • Sedarat F, Xu L, Moore ED, Tibbits GF (2000) Colocalization of dihydropyridine and ryanodine receptors in neonate rabbit heart using confocal microscopy. Am J Physiol Heart Circ Physiol 279:H202–H209

    PubMed  CAS  Google Scholar 

  • Sedarat F, Lin E, Moore ED, Tibbits GF (2004) Deconvolution of confocal images of dihydropyridine and ryanodine receptors in developing cardiomyocytes. J Appl Physiol 97:1098–1103

    Article  PubMed  CAS  Google Scholar 

  • Sephton DH, Driedzic WR (1995) Low temperature acclimation decreases the rate of protein synthesis in rainbow trout (Oncorhynchus mykiss) heart Fish. Physiol Biochem 14:63–69

    CAS  Google Scholar 

  • Shannon TR, Guo T, Bers DM (2003) Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res 93:40–45

    Article  PubMed  CAS  Google Scholar 

  • Shiels HA, Farrell A (1997) The effect of temperature and adrenaline on the relative importance of the sarcoplasmic reticulum in contributing Ca2+ to force development in isolated ventricular trabeculae from rainbow trout. J Exp Biol 200:1607–1621

    PubMed  CAS  Google Scholar 

  • Shiels HA, White E (2005) Temporal and spatial properties of cellular Ca2+ flux in trout ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 288:R1756–R1766

    PubMed  CAS  Google Scholar 

  • Shiels HA, Freund EV, Farrell AP, Block BA (1999) The sarcoplasmic reticulum plays a major role in isometric contraction in atrial muscle of yellowfin tuna. J Exp Biol 202:881–890

    PubMed  Google Scholar 

  • Shiels HA, Vornanen M, Farrell AP (2000) Temperature-dependence of L-type Ca(2+) channel current in atrial myocytes from rainbow trout. J Exp Biol 203:2771–2780

    PubMed  CAS  Google Scholar 

  • Shiels HA, Paajanen V, Vornanen M (2006) Sarcolemmal ion currents and sarcoplasmic reticulum Ca2+ content in ventricular myocytes from the cold stenothermic fish, the burbot (Lota lota). J Exp Biol 209:3091–3100

    Article  PubMed  CAS  Google Scholar 

  • Stern MD, Cheng H (2004) Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35:591–601

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Egginton S, Taylor E (1996) Seasonal temperature acclimatisation of rainbow trout: cardiovascular and morphometric influences on maximal sustainable exercise level. J Exp Biol 199:835–845

    PubMed  Google Scholar 

  • Tibbits GF, Hove-Madsen L, Bers DM (1991) Calcium transport and the regulation of cardiac contractility in teleosts: a comparison with higher vertebrates. Can J Zool 69:2014–2019

    Article  CAS  Google Scholar 

  • Tibbits GF, Philipson KD, Kashihara H (1992) Characterization of myocardial Na(+)–Ca2+ exchange in rainbow trout. Am J Physiol 262:C411–C417

    PubMed  CAS  Google Scholar 

  • Tibbits GF, Xu L, Sedarat F (2002) Ontogeny of excitation–contraction coupling in the mammalian heart. Comp Biochem Physiol A Mol Integr Physiol 132(4):691–698

    Article  Google Scholar 

  • Tiitu V, Vornanen M (2003) Ryanodine and dihydropyridine receptor binding in ventricular cardiac muscle of fish with different temperature preferences. J Comp Physiol B 173:285–291

    Article  PubMed  CAS  Google Scholar 

  • Vornanen M (1996) Excitation–contraction coupling of the developing rat heart. Mol Cell Biochem 163:5–11

    Article  PubMed  Google Scholar 

  • Vornanen M (1998) L-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and beta-adrenergic stimulation. J Exp Biol 201:533–547

    PubMed  CAS  Google Scholar 

  • Vornanen M (1999) Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx. J Exp Biol 202:1763–1775

    PubMed  CAS  Google Scholar 

  • Vornanen M, Shiels HA, Farrell AP (2002) Plasticity of excitation–contraction coupling in fish cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 132(4):827–846

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Peter March and Jane Kott for their assistance with the microscopy and Dr Andy Trafford for supplying the rat heart samples. We are very grateful to Dr A. Chugun and Dr. T. Murayama for providing the antibody against RYR. This study was funded by the BBSRC and The Danish Natural Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly A. Shiels.

Additional information

Communicated by H. V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birkedal, R., Christopher, J., Thistlethwaite, A. et al. Temperature acclimation has no effect on ryanodine receptor expression or subcellular localization in rainbow trout heart. J Comp Physiol B 179, 961–969 (2009). https://doi.org/10.1007/s00360-009-0377-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0377-x

Keywords

Navigation