Skip to main content
Log in

Cardiac contractility of the African sharptooth catfish, Clarias gariepinus: role of extracellular Ca2+, sarcoplasmic reticulum, and β-adrenergic stimulation

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study investigated the dependence of contraction from extracellular Ca2+, the presence of a functional sarcoplasmic reticulum (SR), and the effects of β-adrenergic stimulation using isometric cardiac muscle preparations. Moreover, the expression of Ca2+-handling proteins such as SR-Ca2+-ATPase (SERCA), phospholamban (PLN), and Na+/Ca2+ exchanger (NCX) were also evaluated in the ventricular tissue of adult African sharptooth catfish, Clarias gariepinus, a facultative air-breathing fish. In summary, we observed that (1) contractility was strongly regulated by extracellular Ca2+; (2) inhibition of SR Ca2+-release by application of ryanodine reduced steady-state force production; (3) ventricular myocardium exhibited clear post-rest decay, even in the presence of ryanodine, indicating a decrease in SR Ca2+ content and NCX as the main pathway for Ca2+ extrusion; (4) a positive force-frequency relationship was observed above 60 bpm (1.0 Hz); (5) ventricular tissue was responsive to β-adrenergic stimulation, which caused significant increases in twitch force, kept a linear force-frequency relationship from 12 to 96 bpm (0.2 to Hz), and improved the cardiac pumping capacity (CPC); and (6) African catfish myocardium exhibited similar expression patterns of NCX, SERCA, and PLN, corroborating our findings that both mechanisms for Ca2+ transport across the SR and sarcolemma contribute to Ca2+ activator. In conclusion, this fish species displays great physiological plasticity of E-C coupling, able to improve the ability to maintain cardiac performance under physiological conditions to ecological and/or adverse environmental conditions, such as hypoxic air-breathing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

Availability of data and material

All relevant data are within the paper, and those are available at the corresponding author.

Code availability

Not applicable

References

  • Abdel-Magid AM (1971) The ability of Clarias lazera (Pisces) to survive without air-breathing. J Zool 163:63–72

    Google Scholar 

  • Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Aho E, Vornanen M (1999) Contractile properties of atrial and ventricular myocardium of the heart of rainbow trout Oncorhynchus mykiss: effects of thermal acclimation. J Exp Biol 202:2663–2677

    PubMed  Google Scholar 

  • Babiker MM (1979) Respiratory behaviour, oxygen consumption and relative dependence on aerial respiration in the African lungfish (Protopterus annectens, owen) and an air-breathing teleost (Clarias lazera, C.). Hydrobiologia 65:177–187

    Google Scholar 

  • Bailey JR, Driedzic WR (1990) Enhanced maximum frequency and force development of fish hearts following temperature acclimation. J Exp Biol 149:239–254

    Google Scholar 

  • Belão TC, Leite CA, Florindo LH, Kalinin AL, Rantin FT (2011) Cardiorespiratory responses to hypoxia in the African catfish, Clarias gariepinus (Burchell 1822), an air-breathing fish. J Comp Physiol B 181:905–916

    PubMed  Google Scholar 

  • Bers DM (2001) Excitation-contraction coupling and cardiac contractile force. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    CAS  Google Scholar 

  • Blasco FR, McKenzie DJ, Taylor EW, Rantin FT (2017) The role of the autonomic nervous system in control of cardiac and air-breathing responses to sustained aerobic exercise in the African sharptooth catfish Clarias gariepinus. Comp Biochem Physiol A 203:273–280

    CAS  Google Scholar 

  • Bocalini DS, dos Santos L, Antonio EL, dos Santos AA, Davel AP, Rossoni LV, Vassallo DV, Tucci PJF (2012) Myocardial remodeling after large infarcts in rat converts post rest-potentiation in force decay. Arq Bras Cardiol 98:243–251

    PubMed  Google Scholar 

  • Bossen EH, Sommer JR (1984) Comparative stereology of the lizard and frog myocardium. Tissue Cell 16:173–178

    CAS  PubMed  Google Scholar 

  • Bruton MN (1979) The breeding biology and early development of Clarias gariepinus (Pisces, Clariidae) in Lake Sibaya, South Africa with a review of breeding in species of the subgenus Clarias (Clarias). Trans Zool Soc Lond 35:1–45

    Google Scholar 

  • Burnette WN (1981) “Western Blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    CAS  PubMed  Google Scholar 

  • Butler PJ, Metcalfe JD, Ginley SA (1986) Plasma catecholamines in the lesser spotted dogfish and rainbow trout at rest and during different levels of exercise. J Exp Biol 123:409–421

    CAS  PubMed  Google Scholar 

  • Costa MJ, Rivaroli L, Rantin FT, Kalinin AL (2000) Cardiac tissue function of the teleost fish Oreochromis niloticus under different thermal conditions. J Therm Biol 25:373–379

    CAS  PubMed  Google Scholar 

  • Costa MJ, Olle CD, Kalinin AL, Rantin FT (2004) Role of the sarcoplasmic reticulum in calcium dynamics of the ventricular myocardium of Lepidosiren paradoxa (Dipnoi) at different temperatures. J Therm Biol 29:81–89

    CAS  Google Scholar 

  • Driedzic WR, Gesser H (1985) Ca2+ protection from negative inotropic effect of contraction frequency on teleost hearts. J Comp Physiol B 156:135–142

    Google Scholar 

  • Driedzic WR, Gesser H (1988) Differences in force frequency relationships and calcium dependency between elasmobranches and teleost hearts. J Exp Biol 140:227–241

    Google Scholar 

  • Edman KAP, Johannsson M (1976) The contractile state of rabbit papillary muscle in relation to stimulation frequency. J Physiol 254:565–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed MF, Abu-Amra ES, Badr A (2012) Effect of changes in temperature on the force-frequency relationship in the heart of catfish (Clarias gariepinus). J Basic Appl Zool 65:274–281

    Google Scholar 

  • Fabiato A (1982) Calcium release in skinned cardiac cells: variations with species, tissues, and development. Fed Proc 41:2238–2244

    CAS  PubMed  Google Scholar 

  • Fernández-Miranda G, Romero-Garcia T, Barrera-Lechuga TP, Mercado-Morales M, Rueda A (2019) Impaired activity of ryanodine receptors contributes to calcium mishandling in cardiomyocytes of metabolic syndrome rats. Front Physiol 10:520

    PubMed  PubMed Central  Google Scholar 

  • Ferraris CJ Jr (2007) Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa 1418:1–628

    Google Scholar 

  • Ferraz SA, Bassani JWM, Bassani R (2001) Rest-dependence of twitch amplitude and sarcoplasmic reticulum calcium content in the developing rat myocardium. J Mol Cell Cardiol 33:711–722

    CAS  PubMed  Google Scholar 

  • Ferrington D, Yao Q, Squier T, Bigelow D (2002) Comparable levels of Ca-ATPase inhibition by phospholamban in slow-twitch skeletal and cardiac sarcoplasmic reticulum. Biochemistry 41:13289–13296

    CAS  PubMed  Google Scholar 

  • Florindo LH, Armelina VA, McKenziec DJ, Rantin FT (2018) Control of air-breathing in fishes: central and peripheral receptors. Acta Histochem 120:642–653

    PubMed  Google Scholar 

  • Galli GLGJ, Gesser H, Taylor EW, Shiels HA, Wang T (2006) The role of the sarcoplasmic reticulum in the generation of high heart rates and blood pressures in reptiles. J Exp Biol 209:1956–1963

    PubMed  Google Scholar 

  • Gesser H (1996) Cardiac force-interval relationship, adrenaline and sarcoplasmic reticulum in rainbow trout. J Comp Physiol B 166:278–285

    CAS  Google Scholar 

  • Gingericha WH, Drottar KR (1989) Plasma catecholamine concentrations in rainbow trout (Salmo gairdneri) at rest and after anesthesia and surgery. Gen Comp Endocrinol 73:390–397

    Google Scholar 

  • Glass ML, Rantin FT (2009) Gas exchange and control of respiration in air-breathing teleost fish. In: Glass ML, Wood C (eds) Cardio-respiratory control in vertebrates: comparative and evolutionary aspects. Springer, Berlin, pp 99–119

    Google Scholar 

  • Graham JB, Baird TA (1984) The transition to air breathing in fishes: III. Effects of body size and aquatic hypoxia on the aerial gas exchange of the swamp eel Synbranchus marmoratus. J Exp Biol 108:357–375

    Google Scholar 

  • Graham JB, Chiller LD, Roberts JL (1995) The transition to air breathing in fishes. V. Comparative aspects of cardiorespiratory regulation in Synbranchus marmoratus and Monopterus albus (Synbranchidae). J Exp Biol 198:1455–1467

    CAS  PubMed  Google Scholar 

  • Gwathmey JK, Morgan JP (1991) Calcium handling in myocardium from amphibian, avian, and mammalian species; the search for two components. J Comp Physiol B 161:19–25

    CAS  PubMed  Google Scholar 

  • Harwood CL, Howarth FC, Altringham JD, White E (2000) Rate-dependence changes in cell shortening, intracellular Ca2+ levels and membrane potential in single, isolated rainbow trout (Oncorhynchus mykiss) ventricular myocytes. J Exp Biol 203:493–504

    CAS  PubMed  Google Scholar 

  • Hobai IA, Maack C, O’Rourke B (2004) Partial inhibition of sodium/calcium exchange restores cellular calcium handling in canine heart failure. Circ Res 95:292–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hove-Madsen L (1992) The influence of temperature on ryanodine sensitivity and force-frequency relationship in the myocardium of rainbow trout. J Exp Biol 167:47–60

    CAS  PubMed  Google Scholar 

  • Janssen PM, Periasamy M (2007) Determinants of frequency dependent contraction and relaxation of mammalian myocardium. J Mol Cell Cardiol 43:523–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen K (1966) Air breathing in the teleost Synbranchus marmoratus. Comp Biochem Physiol 18:383–395

    CAS  PubMed  Google Scholar 

  • Kalinin AL, Gesser H (2002) Oxygen consumption and force development in turtle and trout cardiac muscle during acidosis and high extracellular potassium. J Comp Physiol B 172:145–151

    CAS  PubMed  Google Scholar 

  • Keen JE, Farrell AP, Tibbits GF, Brill RW (1992) Cardiac physiology in tunas: effect of ryanodine, calcium and adrenaline on force-frequency relationship in atrial strips from skipjack tuna, Katsuwonus pelamis. Can J Zool 70:1211–1217

    CAS  Google Scholar 

  • Keen JE, Viazon DM, Farre AP, Tibbits GF (1994) Effects of temperature and temperature acclimation on the ryanodine sensitivity of the trout myocardium. J Comp Physiol B 164:438–443

    CAS  Google Scholar 

  • Koss KL, Kranias EG (1996) Phospholamban: a prominent regulator of myocardial contractility. Circ Res 79:1059–1063

    CAS  PubMed  Google Scholar 

  • Kulkarni RS, Pruthviraj CB (2017) Plasma catecholamines levels in two types of freshwater carp fishes, Labeo rohita and Cirrhinus mrigala collected in wild from an aquatic body near Kalaburagi situated in the Deccan plateau of India. Int J Fish Aquatic Stud 5:10–12

    Google Scholar 

  • Layland J, Kentish JC (1999) Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. Am J Physiol Heart Circ Physiol 276:H9–H18

    CAS  Google Scholar 

  • Layland J, Young IS, Altringham JD (1995) The length dependence of work production in rat papillary-muscles in vitro. J Exp Biol 198:2491–2499

    CAS  PubMed  Google Scholar 

  • Lévêque C (1997) Biodiversity dynamics and conservation: the freshwater fish of tropical Africa. University Press, Cambridge

    Google Scholar 

  • Matikainen N, Vornanen M (1992) Effect of season and temperature acclimation on the function of crucian carp (Carassius carassius) heart. J Exp Biol 167:203–220

    Google Scholar 

  • McKenzie DJ, Aota S, Randall DJ (1991) Ventilatory and cardiovascular responses to blood pH, plasma pCO2, blood O2 content, and catecholamines in an air-breathing fish, the bowfin (Amia calva). Physiol Zool 64:432–450

    CAS  Google Scholar 

  • McKenzie DJ, Campbell HA, Taylor EW, Micheli M, Rantin FT, Abe AS (2007) The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus. J Exp Biol 210:4224–4232

    CAS  PubMed  Google Scholar 

  • Monasky MM, Janssen PML (2009) The positive force–frequency relationship is maintained in absence of sarcoplasmic reticulum function in rabbit, but not in rat myocardium. J Comp Physiol B 179:469–479

    PubMed  Google Scholar 

  • Monasky MM, Varian KD, Janssen PM (2008) Gender comparison of contractile performance and beta-adrenergic response in isolated rat cardiac trabeculae. J Comp Physiol B 178:307–313

    CAS  PubMed  Google Scholar 

  • Monteiro DA, Kalinin AK, Selistre-de-Araujo HS, Vasconcelos ES, Rantin FT (2016) Alternagin-C (ALT-C), a disintegrin-like protein from Rhinocerophis alternatus snake venom promotes positive inotropism and chronotropism in fish heart. Toxicon 110:1–11

    CAS  PubMed  Google Scholar 

  • Monteiro DA, Taylor EW, Rantin FT, Kalinin AL (2017) Impact of waterborne and trophic mercury exposures on cardiac function of two ecologically distinct Neotropical freshwater fish Brycon amazonicus and Hoplias malabaricus. Comp Biochem Physiol C 201:26–34

    CAS  Google Scholar 

  • On C, Marshall CR, Chen N, Moyes CD, Tibbits GF (2008) Gene structure evolution of the Na+- Ca2+ exchanger (NCX) family. BMC Evol Biol 8:127. https://doi.org/10.1186/1471-2148-8-127

    Article  PubMed  PubMed Central  Google Scholar 

  • Pegoraro C, Pollet N, Monsoro-Brug AH (2011) Tissue-specific expression of sarcoplasmic/endoplasmic reticulum calcium ATPases (ATP2A/SERCA) 1, 2, 3 during Xenopus laevis development. Gene Expr Patterns 11:122–128

    CAS  PubMed  Google Scholar 

  • Perry SF, Gilmour KM, Vulesevic B, McNeill B, Chew SF, Ip YK (2005) Circulating catecholamines and cardiorespiratory responses in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia. Physiol Biochem Zool 78:325–334

    CAS  PubMed  Google Scholar 

  • Ranek MJ, Vu A, Willis MS, Lymperopoulos A (2017) Neuronal Hormones and the sympathetic/parasympathetic regulation of the heart. In: Schisler JC, Lang CH, Willis MS (eds) Endocrinology of the heart in health and disease: integrated, cellular, and molecular endocrinology of the heart. Elsevier, Amsterdam, pp 207–227

    Google Scholar 

  • Rantin FT, Gesser H, Kalinin AL, Guerra CDR, Freitas JC, Driedzic WR (1998) Heart performance, Ca2+ regulation and energy metabolism at high temperatures in Bathygobius soporator, a tropical, marine teleost. J Therm Biol 23:31–39

    CAS  Google Scholar 

  • Reiter M, Vierling W, Seibel K (1984) Excitation-contraction coupling in rested-state contraction of guinea-pig ventricular myocardium. Naunyn Schmiedeberg's Arch Pharmacol 325:159–169

    CAS  Google Scholar 

  • Rocha ML, Rantin FT, Kalinin AL (2007a) Effects of temperature and calcium availability on cardiac contractility in Synbranchus marmoratus, a neotropical teleost. Comp Biochem Physiol A 146:544–550

    Google Scholar 

  • Rocha ML, Rantin FT, Kalinin AL (2007b) Importance of the sarcoplasmic reticulum and adrenergic stimulation on the cardiac contractility of the neotropical teleost Synbranchus marmoratus under different thermal conditions. J Comp Physiol B 177:713–721

    CAS  PubMed  Google Scholar 

  • Roof SR, Shannon TR, Janssen PM, Ziolo MT (2011) Effects of increased systolic Ca2+ and phospholamban phosphorylation during β-adrenergic stimulation on Ca2+ transient kinetics in cardiac myocytes. Am J Physiol Heart Circ Physiol 301:H1570–H1578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rumberger E, Reichel H (1972) The force–frequency relationship: a comparative study between warm- and cold-blooded animals. Pflugers Arch 332:206–217

    CAS  PubMed  Google Scholar 

  • Sacca R, Burggren W (1982) Oxygen uptake in air and water in the air-breathing reed fish Calamoichthys calabaricus: role of skin, gills and lungs. J Exp Biol 97:179–186

    CAS  PubMed  Google Scholar 

  • Shiels HA, Farrel AP (1997) The effect of temperature and adrenaline on the relative importance of the sarcoplasmic reticulum in contributing Ca2+ to force development in isolated ventricular trabeculae from rainbow trout. J Exp Biol 200:1607–1621

    CAS  PubMed  Google Scholar 

  • Shiels HA, Farrell AP (2000) The effect of ryanodine on isometric tension development in isolated ventricular trabeculae from Pacific mackerel (Scomber japonicus). Comp Biochem Physiol A 125:331–341

    CAS  Google Scholar 

  • Shiels HA, Freund EV, Farrell AP, Block BA (1999) The sarcoplasmic reticulum plays a major role in isometric contraction in atrial muscle of yellow tuna. J Exp Biol 202:881–890

    PubMed  Google Scholar 

  • Shiels HA, Vornanen M, Farrell AP (2002) The force–frequency relationship in fish hearts - a review. Comp Biochem Physiol A 132:811–826

    Google Scholar 

  • Shiels HA, Calaghan SC, White E (2006) The cellular basis for enhanced volume-modulated cardiac output in fish hearts. J Gen Physiol 128:37–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skals M, Skovgaard N, Taylor EW, Leite CAC, Abe AS, Wang T (2006) Cardiovascular changes under normoxic and hypoxic conditions in the air-breathing teleost Synbranchus marmoratus: importance of the venous system. J Exp Biol 209:4167–4173

    PubMed  Google Scholar 

  • Skrzynska AK, Maiorano E, Bastaroli M, Naderi F, Míguez JM, Martínez-Rodríguez G, Mancera JM, Martos-Sitcha JA (2018) Impact of air exposure on vasotocinergic and isotocinergic systems in gilthead Sea Bream (Sparus aurata): new insights on fish stress response. Front Physiol 9:96

    PubMed  PubMed Central  Google Scholar 

  • Subramani S, Balakrishnan S, Jyoti T, Mohammed AA, Arasan S, Vijayanand C (2005) Force-frequency relation in frog-ventricle is dependent on the direction of sodium/calcium exchange in diastole. Acta Physiol Scand 185:193–202

    CAS  PubMed  Google Scholar 

  • Sutko JL, Bers D, Reeves JP (1986) Postrest inotropy in rabbit ventricle: Na+-Ca2+ exchange determines sarcoplasmic reticulum Ca2+ content. Am J Phys 250:H654–H661

    CAS  Google Scholar 

  • Teixeira MT, Armelin VA, Abe AS, Rantin FT, Florindo LH (2015) Autonomic control of post-air-breathing tachycardia in Clarias gariepinus (Teleostei: Clariidae). J Comp Physiol B 185:669–676

    CAS  PubMed  Google Scholar 

  • Tibbits GF, Moyes CD, Hove-Madsen L (1992) Excitation-contraction coupling in the teleost heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology: the cardiovascular system. Academic Press, New York, pp 267–304

    Google Scholar 

  • Vassalo DV, Mill JG (1988) Mechanical behavior of rest contractions in cardiac muscle. Acta Physiol Pharmacol Ther Latinoam 38:87–97

    Google Scholar 

  • Vassalo DV, Mill JG, Abreu GR (1990) Control of rest potentiation in the ventricular myocardium by the Na+-Ca2+ exchange mechanism. Acta Physiol Pharmacol Ther Latinoam 40:129–136

    Google Scholar 

  • Vila Petroff MG, Palomeque J, Mattiazzi AR (2003) Na+-Ca2+ exchange function underlying contraction frequency inotropy in the cat myocardium. J Physiol 550:801–817

    PubMed  PubMed Central  Google Scholar 

  • Vornanen M (1989) Regulation of contractility of the fish (Carassius carassius) heart ventricle. Comp Biochem Physiol C 94:477–483

    Google Scholar 

  • Vornanen M (1997) Sarcolemmal Ca influx through L-type Ca channels in ventricular myocytes of a teleost fish. Am J Phys 272:R1432–R1440

    CAS  Google Scholar 

  • Vornanen M (1998) L-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and adrenergic stimulation. J Exp Biol 201:533–547

    CAS  PubMed  Google Scholar 

  • Vornanen M (1999) Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx. J Exp Biol 202:1763–1775

    CAS  PubMed  Google Scholar 

  • Vornanen M, Shiels HA, Farrell AP (2002) Plasticity of excitation–contraction coupling in fish cardiac myocytes. Comp. Biochem Physiol A 132:827–846

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Polletini Fish Farm, which provided the fish. They are also grateful to Mr. Angelo Carnelosi for the technical assistance.

Funding

This study was supported by FAPESP (São Paulo Research Foundation – N.U.J. Scientific Initiation Fellowship, Grant Number 11/07645-1), CAPES (Coordination for the Improvement of Higher Education Personnel - A.G.L. and E.S.V. Doctoral Fellowships), and INCT-FisComp (National Institute of Science and Technology in Comparative Physiology - Grant Numbers CNPq 573921/2008-3, FAPESP 08/57712-4).

Author information

Authors and Affiliations

Authors

Contributions

A.G.L. and N.U.J.: performed the experiment and collected the data, analyzed and interpreted the data, writing—original draft preparation. D.A.M.: analyzed and interpreted the data, writing—original draft preparation, writing—reviewing and editing, and conceptualization. A.L.K.: conceptualization, funding acquisition. F.T.R.: supervised the research and critically revised the final version of the manuscript, funding acquisition. All authors provided intellectual feedback on the manuscript and approved its final version.

Corresponding author

Correspondence to Diana Amaral Monteiro.

Ethics declarations

Ethics approval

This study was performed with the approval of the Committee of Ethics in Animal Experimentation (# 031/2011) of the Federal University of São Carlos.

Consent to participate

All names in the author list have been involved in various stages of experimentation or writing.

Consent for publication

All authors agree to submit the paper for publication in the Journal of Fish Physiology and Biochemistry.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

DAM and AGL should be considered joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, D.A., Lopes, A.G., Jejcic, N.U. et al. Cardiac contractility of the African sharptooth catfish, Clarias gariepinus: role of extracellular Ca2+, sarcoplasmic reticulum, and β-adrenergic stimulation. Fish Physiol Biochem 47, 1969–1982 (2021). https://doi.org/10.1007/s10695-021-01023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-021-01023-7

Keywords

Navigation