Skip to main content

Advertisement

Log in

How to budget metabolic energy: torpor in a small Neotropical mammal

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Neotropical nectar-feeding bats (Glossophaginae) are highly specialized in the exploitation of floral nectar and have one of the highest mass-specific metabolic rates among mammals. Nevertheless, they are distributed throughout the tropics and subtropics over a wide elevational range, and thus encounter many extreme and energetically challenging environmental conditions. Depressing their otherwise high metabolic rate, e.g., in situations of food restriction, might be an important adaptive physiological strategy in these dietary specialists. We investigated the thermoregulatory behavior of captive 10-g nectar feeding bats (Glossophaga soricina; Chiroptera, Phyllostomidae) under variable ambient temperatures (T a) and feeding regimes and predicted that bats would use torpor as an energy-conserving behavior under energetic constraints. All tested animals entered torpor in response to energetic restrictions and the depth of torpor was dependent on the body condition of the animals and hence on their degree of physiological constraints. Periods of torpor with body temperatures (T b) below 34°C were precisely adjusted to the photoperiod. The median length of diurnal torpor was 11.43 h. The lowest T b measured was 21°C at a T a of 19°C. Estimated energy savings due to torpor were considerable, with reductions in metabolic rate to as low as 5% of the metabolic rate of normothermic bats at the same T a. However, contrary to temperate zone bats that also employ diurnal torpor, G. soricina regulated their T b to the highest possible levels given the present energetic supplies. To summarize, G. soricina is a precise thermoregulator, which strategically employs thermoregulatory behavior in order to decrease its energy expenditure when under energetic restrictions. This adaptation may play a crucial role in the distribution and the assembly of communities of nectar-feeding bats and may point to a general capacity for torpor in tropical bats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bm:

Body mass

T a :

Ambient temperature

T b :

Body temperature

MR:

Metabolic rate

TMR:

Torpor metabolic rate

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{{\text{2}}} \) :

Rate of oxygen production

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{CO}}_{{\text{2}}} \) :

Rate of carbon dioxide production

RQ:

Respiratory quotient

DEE:

Daily energy expenditure

E :

Energy

P f :

Costs of forward flight

P hov :

Cost of hovering

MET:

Costs of thermoregulation and maintenance of body functions

t :

Time

SD:

Standard deviation

n :

Sample size

References

  • Alvarez J, Willig MR, Knox Jones J Jr, Webster D (1991) Glossophaga soricina. Mammal Species 379:1–7

    Article  Google Scholar 

  • Arends A, Bonaccorso FJ, Genoud M (1995) Basal rates of metabolism of nectarivorous bats (Phyllostomidae) from a semiarid thorn forest in Venezuela. J Mammal 76:947–956

    Article  Google Scholar 

  • Arlettaz R, Ruchet C, Aeschimann J, Brun E, Genoud M, Vogel P (2000) Physiological traits affecting the distribution and wintering strategy of the bat Tadarida teniotis. Ecology 81:1004–1014

    Google Scholar 

  • Arroyo-Cabrales J, Hollander R, Jones JK Jr (1987) Choeronycteris mexicana. Mammal Species 291:1–5

    Article  Google Scholar 

  • Audet D, Thomas DW (1997) Facultative hypothermia as a thermoregulatory strategy in the phyllostomid bats, Carollia perspicillata and Sturnira lilium. J Comp Physiol B 167:146–152

    Article  PubMed  CAS  Google Scholar 

  • Bae H, Larkin JE, Zucker I (2003) Juvenile Siberian hamsters display torpor and modified locomotor activity and body temperature rhythms in response to reduced food availability. Physiol Biochem Zool 76:858–867

    Article  PubMed  Google Scholar 

  • Baker HG, Baker I (1990) The predictive value of nectar chemistry to the recognition of pollinator types. Isr J Bot 39:157–166

    CAS  Google Scholar 

  • Barclay RMR, Lausen CL, Hollis L (2001) What’s hot and what’s not: defining torpor in free-ranging birds and mammals. Can J Zool 79:1885–1890

    Article  Google Scholar 

  • Bonaccorso FJ, McNab BK (1997) Plasticity of energetics in blossom bats (Pteropodidae): impact on distribution. J Mammal 78:1073–1088

    Article  Google Scholar 

  • Coburn DK, Geiser F (1998) Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113:467–473

    Article  Google Scholar 

  • Cruz-Neto AP, Abe AS (1997) Taxa metabólica e termoregulacão no morçego nectarívoro, Glossophaga soricina (Chiroptera, Phyllostomidae). Rev Brasil Biol 57:203–209

    Google Scholar 

  • Daussmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  CAS  Google Scholar 

  • Dobat K, Peikert-Holle T (1985) Blüten und Fledermäuse, Bestäubung durch Fledermäuse und Flughunde (Chiropterophilie). Senckenberg, Kramer Verlag, Frankfurt

  • Fedak MA, Rome L, Seeherman HJ (1981) One-step N2-dilution technique for calibrating open-circuit \( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{{\text{2}}} \) measuring systems. J Appl Phys 51:772–776

    Google Scholar 

  • Geiser F (2004) The role of torpor in the life of Australian arid zone mammals. Aust Mammal 26:125–134

    Google Scholar 

  • Geiser F, Brigham MR (2000) Torpor, thermal biology, and energetics in the Australian long-eared bats (Nyctophilus). J Comp Physiol B 170:153–162

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Geiser F, Coburn DK, Körtner G, Law BS (1996) Thermoregulation, energy metabolism, and torpor in blossom-bats, Syconycteris australis (Megachiroptera). J Zool Lond 239:583–590

    Article  Google Scholar 

  • Geiser F, Holloway JC, Körtner G, Maddocks TA, Turbill C, Brigham RM (2000) Do patterns of torpor differ between free-ranging and captive mammals and birds? In: Heldmaier G, Klingenspor M (eds) Life in the cold. Eleventh international hibernation symposium. Springer, Heidelberg

  • Genin F, Perret M (2003) Daily hypothermia in captive grey mouse lemurs (Microcebus murinus): effects of photoperiod and food restriction. Comp Biochem Physiol B 136:71–81

    Article  PubMed  CAS  Google Scholar 

  • Genoud M, Bonaccorso FJ, Arends A (1990) Rate of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp Biochem Physiol 97:229–234

    Article  Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in mammals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Article  PubMed  CAS  Google Scholar 

  • Hamilton IM, Barclay RMR (1994) Patterns of daily torpor and day-roost selection by male and female big brown bats (Eptesicus fuscus). Can J Zool 72:744–749

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270

    Article  Google Scholar 

  • von Helversen O, Reyer H-U (1984) Nectar intake and energy expenditure in a flower visiting bat. Oecologia 63:178–184

    Article  Google Scholar 

  • von Helversen O, Winter Y (2003) Glossophagine bats and their flowers: costs and benefits for plants and pollinators. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago

    Google Scholar 

  • Horner MA, Fleming TH, Sahley CT (1998) Foraging behaviour and energetics of a nectar-feeding bat, Leptonycteris curasoae (Chiroptera: Phyllostomidae). J Zool Lond 244:575–586

    Article  Google Scholar 

  • Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of the Australian bat Chalinolobus gouldii (Chiroptera: Verpertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80

    Article  PubMed  CAS  Google Scholar 

  • Hosken DJ, Withers PC (1999) Metabolic physiology of euthermic and torpid lesser long-eared bats Nyctophilus geoffroyi (Chiroptera: Vespertilionidae). J Mammal 80:42–52

    Article  Google Scholar 

  • Kelm DH (2006) Roosting ecology of Neotropical bats: communal roosting, the energetics interface and applications in restoration ecology. Dissertation, University of Erlangen-Nuremberg, Germany

  • Kulzer E (1965) Temperaturregulation bei Fledermäusen (Chiroptera) aus verschiedenen Klimazonen. Z Vergleichende Physiol 50:1–34

    Article  Google Scholar 

  • Kurta A, Bell GP, Nagy KA, Kunz TH (1989) Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiol Zool 62:804–818

    Google Scholar 

  • Lovegrove BG, Lawes MJ, Roxburgh L (1999) Confirmation of pleisiomorphic daily torpor in mammals: the round-eared elephant shrew Macroscelides proboscideus (Macroscelidea). J Comp Physiol B 169:453–460

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP (1970) Thermoregulation and metabolism in bats. In: Wimsatt WA (ed) Biology of bats, vol I. Academic, Orlando

  • McManus JJ (1977) Thermoregulation. In: Baker RJ, Jones JK Jr, Carter DC (eds) Biology of the bats of the New World family Phyllostomatidae. Part II. Special Publications. Mus Tex Tech Univ 13:1–364

  • McNab BK (1969) The economics of temperature regulation in neotropical bats. Comp Biochem Physiol 31:227–268

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (1976) Seasonal fat reserves of bats in two tropical environments. Ecology 57:332–338

    Article  Google Scholar 

  • Rasweiler JJ (1973) Care and management of the Long tongued bat, Glossophaga soricina (Chiroptera: Phyllostomatidae), in the laboratory, with observations on estivation induced by food deprivation. J Mammal 54:391–404

    Article  PubMed  Google Scholar 

  • Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G (1993) Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool 267:104–112

    Article  PubMed  CAS  Google Scholar 

  • Schmid J (2000) Torpor in the tropics: the case of the gray mouse lemur (Microcebus murinus). Basic Appl Ecol 1:133–139

    Article  Google Scholar 

  • Severinsen T, Munch IC (1999) Body core temperature during food restriction in rats. Acta Physiol Scand 165:299–305

    Article  PubMed  CAS  Google Scholar 

  • Simmons NB, Voss RS (1998) The mammals of Paracou, French Guiana: a neotropical lowland rainforest fauna. Part I. Bats. Bull Am Mus Nat Hist 237:1–219

    Google Scholar 

  • Soriano PJ, Ruiz A, Arends A (2002) Physiological responses to ambient temperature manipulation by three species of bats from Andean cloud forests. J Mammal 83:445–457

    Article  Google Scholar 

  • Speakman JR, Racey PA (1989) Hibernal ecology of the Pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. J Anim Ecol 58:797–813

    Article  Google Scholar 

  • Speakman JR, Webb PI, Racey PA (1991) Effects of disturbance on the energy expenditure of hibernating bats. J Appl Ecol 28:1087–1104

    Article  Google Scholar 

  • Stevens RD (2004) Untangling latitudinal richness gradients at higher taxonomic levels: familial perspectives on the diversity of New World bat communiities. J Biogeogr 31:665–674

    Article  Google Scholar 

  • Studier EH (1981) Energetic advantages of slight drops in body temperature in little brown bats, Myotis lucifugus. Comp Biochem Physiol 70:537–540

    Article  Google Scholar 

  • Studier EH, Wilson DE (1979) Effects of captivity on thermoregulation and metabolism in Artibeus jamaicensis (Chiroptera: Phyllostomidae). Comp Biochem Physiol 62:347–350

    Article  Google Scholar 

  • Tamsitt JR, Nagorsen D (1982) Anoura cultrata. Mammal Species 179:1–5

    Article  Google Scholar 

  • Thomas DW, Dorais M, Bergeron JM (1990) Winter energy budgets and the cost of arousal for hibernating little brown bats, Myotis lucifugus. J Mammal 71:475–479

    Article  Google Scholar 

  • Tschapka M (2004) Energy density patterns of nectar resources permit coexistence within a guild of Neotropical flower-visiting bats. J Zool Lond 263:7–21

    Article  Google Scholar 

  • Twente JW, Twente JA (1964) An hypothesis concerning the evolution of heterothermy in bats. Ecology 36:706–732

    Article  Google Scholar 

  • Voigt CC (2000) Intraspecific scaling of flight power in the bat Glossophaga soricina (Phyllostomidae). J Comp Physiol B 170:403–410

    Article  PubMed  CAS  Google Scholar 

  • Voigt CC (2004) The power requirements (Glossophaginae: Phyllostomidae) for clinging to flowers. J Comp Physiol B 174:541–548

    PubMed  Google Scholar 

  • Voigt CC, Winter Y (1999) Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats. J Comp Physiol B 169:38–48

    Article  PubMed  CAS  Google Scholar 

  • Voigt CC, Kelm DH, Visser GH (2006) Field metabolic rates of phytophagous bats: do pollination strategies of plants make life of nectar-feeders spin faster? J Comp Physiol B 176:213–222

    Article  PubMed  Google Scholar 

  • Voss RS, Emmons LH (1996) Mammalian diversity in Neotropical lowland rainforests: a preliminary assessment. Bull Am Mus Nat Hist 230:1–115

    Google Scholar 

  • Wieser W (1986) Bioenergetic: Energietransformationen bei Tieren. Thieme, Stuttgart, New York

  • Wilkinson GS, Fleming TH (1996) Migration and evolution of lesser long-nosed bats Leptonycteris curasoae, inferred from mitochondrial DNA. Mol Ecol 5:329–339

    Article  PubMed  CAS  Google Scholar 

  • Willis CKR, Lane JE, Liknes ET, Swanson DL, Brigham RM (2005) Thermal energetics of female big brown bats (Eptesicus fuscus). Can J Zool 83:871–879

    Article  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Winter Y (1998) In vivo measurement of near maximal rates of nutrient absorption in a mammal. Comp Biochem Physiol 119A:853–859

    CAS  Google Scholar 

  • Winter Y (1998) Energetic cost of hovering flight in a nectar-feeding bat measured with fast-response respirometry. J Comp Physiol B 168:424–444

    Google Scholar 

  • Winter Y (1999) Flight speed and body mass of nectar-feeding bats (Glossophaginae) during foraging. J Exp Biol 202:1917–1930

    PubMed  CAS  Google Scholar 

  • Winter Y, Helversen O von (1998) The energy cost of flight: do small bats fly more cheaply than birds? J Comp Physiol B 168:105–111

    Article  PubMed  CAS  Google Scholar 

  • Winter Y, Voigt C, von Helversen O (1998) Gas exchange during hovering flight in a nectar-feeding bat Glossophaga soricina. J Exp Biol 201:237–244

    PubMed  CAS  Google Scholar 

  • Withers PC (1977) Measurement of \( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{{\text{2}}} ,\,\ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{CO}}_{{\text{2}}} , \) and evaporative water loss with a flow-through mask. J Appl Phys 42:120–123

  • Yancey FD, Goetze JR, Jones C (1998) Saccopterys bilineata. Mammal Species 581:1–5

    Google Scholar 

Download references

Acknowledgments

We are grateful to Christian Voigt and York Winter for valuable advice, Sylvia Ortmann and two anonymous reviewers for comments on the manuscript and Mirkka Jones for proofreading. The experiments complied with the German laws on animal experimentation and were performed under the approval of the Animal Ethics Committee of the Bavarian District Court.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev H. Kelm.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelm, D.H., von Helversen, O. How to budget metabolic energy: torpor in a small Neotropical mammal. J Comp Physiol B 177, 667–677 (2007). https://doi.org/10.1007/s00360-007-0164-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-007-0164-5

Keywords

Navigation