Skip to main content
Log in

Nectar intake and energy expenditure in a flower visiting bat

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

In a coastal region of Venezuela the daily energy expenditure (DEE) and water turnover of the flower visiting bat Anoura caudifer was measured by using the doubly labeled water method. In flower visitors, this method allows independent measurement of energy intake and expenditure if the animals drink no additional water and if the nectar's energy content is known. An average DEE of 12.4 kcal/d and water exchange of 13.4 ml/d were found. Our data show a balanced energy budget when animals in the field imbibe nectar with a sugar concentration of 18–21%, which is roughly medial in the range of nectar concentrations of various bat flowers. The energy turnover of flower visiting bats is high compared with DEEs of other bat species, small mammals and birds; flower visiting bats seem to belong to those species having ‘a fast spin of the life motor’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschoff J, Pohl H (1970) Der Ruheumsatz von Vögeln als Funktion der Tageszeit und Körpergröße. J Ornithol 111:38–47

    Google Scholar 

  • Baer GM, McLean RG (1972) A new method of bleeding small and infant bats. J Mammal 53:231–232

    Google Scholar 

  • Baker HG (1975) Sugar concentrations in nectars from humming-bird flowers. Biotropica 7:37–41

    Google Scholar 

  • Baker HG (1978) Chemical aspects of the pollination biology of woody plants in the tropics. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as a living system. Cambridge Univ Press, Cambridge, pp 57–82

    Google Scholar 

  • Berger M, Hart JS (1974) Physiology and energetics of flight. In: Farner DS, King JR (eds) Avian Biology, vol. IV. Academic Press, New York, pp 416–477

    Google Scholar 

  • Bryant DM, Westerterp KR (1980a) The energy budget of the house martin (Delichon urbica L). Ardea 68:91–102

    Google Scholar 

  • Bryant DM, Westerterp KR (1980b) Energetics of foraging and free existence in birds. In: Nöhring R (ed) Acta XVII Congr Intern Ornith, Berlin, pp 292–299

  • Calder WA (1981) Diuresis on the desert? Condor 83:267–268

    Google Scholar 

  • Calder WA, Hiebert SM (1983) Nectar feeding, diuresis and electrolyt replacement of hummingbirds. Physiol Zool 56:325–334

    Google Scholar 

  • Carpenter RE (1968) Salt and water metabolism in the marine fisheating bat Pizonyx vivesi. Comp Biochem Physiol 24:951–964

    Google Scholar 

  • Carpenter RE (1969) Structure and function of the kidney and the water balance of desert bats. Physiol Zool 42:288–302

    Google Scholar 

  • Drent RH, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252

    Google Scholar 

  • Geluso KN (1980) Renal form and function in bats: an ecophysiological appraisal. In: Wilson, Gardner (eds) Proc 5th Intern Bat Res Confer. Texas Tech Press, Lubbock, pp 407–414

    Google Scholar 

  • Grodzinski W, Wunder BA (1975) Ecological energetics of small mammals. In: Golley FB, Petrusewics K, Ryszkowiski L (eds) Small mammals, their productivity and population dynamics. Cambridge Univ Press, Cambridge, pp 173–204

    Google Scholar 

  • Haber WA, Frankie GW (1982) Pollimation of Luehea (Tiliaceae) in Costa Rican deciduous forest. Ecology 63:1740–1750

    Google Scholar 

  • Hainsworth FR (1978) Feeding: models of costs and benefits in energy regulation. Am Zool 18:701–714

    Google Scholar 

  • Heinrich B (1972) Energetics of temperature regulation and foraging in a bumblebee, Bombus terricola Kirby. J Comp Physiol 77:49–64

    Google Scholar 

  • Howell DJ (1976) Weight loss and temperature regulation in clustered versus individual Glossophaga soricina. Comp Biohcem Physiol 53:197–200

    Google Scholar 

  • Howell DJ (1979) Flock foraging in nectar feeding bats: advantages to the bats and to the host plants. Am Nat 114:23–49

    Google Scholar 

  • Jaeger P (1974) Contribution a l'etude de la Chriopterogamie. Le Balsa (Ochroma lagopus Sw., Bombacacees). Bull I.F.A.N. 36:886–899

    Google Scholar 

  • Kendeigh SC (1970) Energy requirments for existence in relation to size of bird. Condor 72:60–65

    Google Scholar 

  • King JR (1974) Seasonal allocation of time and energy resources in birds. In: Paynter RA (ed) Avian Energetics. Publ Nuttall Ornithol Club, No 15, Cambridge, Massachusetts, pp 4–70

  • Kleiber M (1960) The fire of life. John wiley, New York

    Google Scholar 

  • Kunz TH (1980) Daily energy budgets of free-living bats. In: Wilson, Gardner (eds) Proc 5th Intern Bat Res Confer, Texas Tech Press, Lubbock, pp 369–392

    Google Scholar 

  • Lifson N, McClintock R (1966) Theory of use of the turnover rates of body water for measuring energy and metarial balance. J Theor Biol 12:46–74

    Google Scholar 

  • McFarland W, Wimsatt W (1969) Renal function and its relation to the ecology of the vampire bat, Desmodus rotundus. Comp Biochem Physiol 28:985–1006

    Google Scholar 

  • McNab BK (1969) The economics of temperature regulation in neotropical bats. Comp Biochem Physiol 31:227–268

    Google Scholar 

  • McNab BK (1982) Evolutionary alternatives in the physiological ecology of bats. In: Kunz TH (ed) Ecology of bats. Plenum Press, New York London, pp 151–200

    Google Scholar 

  • Nagy KA (1980) CO2 production in animals: analysis of potential errors in the doubly labeled water method. Am J Physiol 238:R466-R473

    Google Scholar 

  • Nagy KA, Montgomery GG (1980) Field metabolic rate, water flux and food consumption in three-toed sloths (Bradypus variegatus). J Mammal 61:465–472

    Google Scholar 

  • Ochoa J (1980) Lista y comentarios ecologicos de las especies de Murcielagos (Mammalia-Chiroptera) en la ciudad de Maracay y el Parque National “Henri Pittier” (Rancho Grande), Aragua Venezuela. PhD thesis, Univ of Maracay

  • Pearson OP (1954) The daily energy requirements of a wild Anna hummingbird. Condor 56:317–322

    Google Scholar 

  • Sazima M, Sazima I (1975) Quiropterofilia em Lafoensia Pacari St. Hil. (Lythraceae), na Serra do cipo, Minas Gerais. Clencia e Cultura 27:405–416

    Google Scholar 

  • Sazima M, Sazima I (1978) Bat pollination of the passion flower, Passiflora mucronata, in Southeastern Brazil. Biotropica 10:100–109

    Google Scholar 

  • Sazima M, Sazima I (1980) Bat visits to Marcgravia myriostigma Tr. et Planch. (Marcgraviaceae) in Southeastern Brazil. Flora 169:84–88

    Google Scholar 

  • Schäfer E (1952) Ökologischer Querschnitt durch den “Parque Nacional de Aragua”. J Orn 93:313–352

    Google Scholar 

  • Schuchmann K, Jakob H (1981) Energiehaushalt tropischer Trochiliden. Ecol Birds 3:281–306

    Google Scholar 

  • Scogin R (1980) Floral pigments and nectar constituents of two bat-pollinated plants: coloration, nutritional, and energetic considerations. Biotropica 12:273–276

    Google Scholar 

  • Studier EH (1970) Evaporative water loss in bats. Comp Biochem Physiol 35:935–943

    Google Scholar 

  • Studier EH, Nisniewski SJ, Feldman AT, Dapson RW, Boyd BC, Wilson DE (1983) Kidney structure in neotropical bats. J Mammal 64:445–452

    Google Scholar 

  • Taylor CR, Schmidt-Nielsen K, Raab JL (1970) Scaling of energetic costs of running to body size in mammals. Am J Physiol 219:1104–1107

    Google Scholar 

  • Thomas SP (1975) Metabolism during flight in two species of bats, Phyllostomus hastatus and Pteropus gouldii. J Exp Biol 63:273–293

    Google Scholar 

  • Tucker VA (1973) Bird metabolism and flight: evaluation a theory. J Exp Biol 58:689–709

    Google Scholar 

  • Vogel S (1958) Fledermausblumen in Südamerika. Österr Bot Zschr 104:491–530

    Google Scholar 

  • Vogel S (1968) Chiropterophilie in der neotropischen Flora I, II, III. Flora 157:562–602, 158:185–222, 158:289–323

    Google Scholar 

  • Vogel VB (1969) Vergleichende Untersuchungen über den Wasserhaushalt von Fledermäsen (Rhinopoma, Rhinolophus und Myotis). Z Vergl Physiol 64:324–345

    Google Scholar 

  • Voss R, Turner M, Inouye R, Fisher M, Cort R (1979) Floral biology of Markea neurantha Hemsley (Solanaceae), a bat-pollinated Epiphyte. Am Midl Nat 103:262–268

    Google Scholar 

  • Walsberg GE (1984) Avian ecological energetics. In: Farner DS, King JR (eds) Avian Biology, vol VII. Academic Press New York, in press

    Google Scholar 

  • Weathers WW, Nagy JS (1980) Simultaneous doubly labeled water (3HH18O) and time-budget estimates of daily energy expenditure in Phainopepla nitens. Auk 97:861–867

    Google Scholar 

  • Westerterp KR, Drent RH (1984) Energetic costs and energy-saving mechanism in parental care of free-living passerine birds as determined by the D2 18O method. Ardea (in press)

  • Wolf L, Hainsworth FR (1971) Time and energy budgest of territorial hummingbirds. Ecology 52:980–988

    Google Scholar 

  • Wunder BA (1975) A model for estimating metabolic rate of active or resting mammals. J Theor Biol 49:345–354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

v. Helversen, O., Reyer, H.U. Nectar intake and energy expenditure in a flower visiting bat. Oecologia 63, 178–184 (1984). https://doi.org/10.1007/BF00379875

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379875

Keywords

Navigation