Skip to main content
Log in

Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Force feedback from Campaniform sensilla (CS) on insect limbs helps to adapt motor outputs to environmental conditions, but we are only beginning to reveal the neural control mechanisms that mediate these influences. We studied CS groups that affect control of the thoraco-coxal joint in the stick insect Carausius morosus by applying horizontal and vertical forces to the leg stump. Motor effects of ablation of CS groups were evaluated by recording extracellularly from protractor (ProCx) and retractor (RetCx) nerves. Extracellular recordings showed that the effects of stimulating the sensilla were consistent with their broad ranges of directional sensitivity: for example, RetCx firing in response to posterior bending could be reduced by ablating several groups of trochanteral CS, whereas ablation of tibial and femoral sensilla had little effect. In contrast, ProCx motor neuron activity upon anteriorly directed stimuli was affected mainly by ablating a single CS group (G2). Dye fills of trochanteral, femoral and tibial CS groups with fluorescent dyes revealed a common projection pattern with little group specificity. These findings support the idea that the influences of CS feedback are determined by the activities of pre-motor interneurons, facilitating fast and task-dependent adaptation to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

abl.:

Ablated

C. morosus :

Carausius morosus

CS:

Campaniform sensilla

CTr:

Coxo-trochanteral

FTi:

Femur–tibial

ncr:

Nervus cruris

ThC:

Thorax–coxal

ProCx:

Protractor coxae

RetCx:

Retractor coxae

References

  • Akay T, Bässler U, Gerharz P, Büschges A (2001) The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. J Neurophysiol 85(2):594–604

    Article  CAS  PubMed  Google Scholar 

  • Akay T, Haehn S, Schmitz J, Büschges A (2004) Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J Neurophysiol 92(1):42–51

    Article  PubMed  Google Scholar 

  • Akay T, Ludwar BC, Göritz ML, Schmitz J, Büschges A (2007) Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. J Neurosci 27(12):3285–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alnajjar F, Itkonen M, Berenz V, Tournier M, Nagai C, Shimoda S (2015) Sensory synergy as environmental input integration. Front Neurosci 8:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Bässler U, Rohrbacher J, Karg G, Breutel G (1991) Interruption of searching movements of partly restrained front legs of stick insects, a model situation for the start of a stance phase? Biol Cybern 65(6):507–514

    Article  Google Scholar 

  • Brunner von Wattenwyl C (1907) Die Insektenfamilie der Phasmiden. Verlag Engelmann, Leipzig

    Google Scholar 

  • Burns M, Usherwood P (1979) The control of walking in orthoptera: II. Motor neurone activity in normal free-walking animals. J Exp Biol 79(1):69–98

    Google Scholar 

  • Burrows M (1975) Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. J Exp Biol 62(1):189–219

    CAS  PubMed  Google Scholar 

  • Burrows M (1987) Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. J Neurosci 7(4):1064–1080

    Article  CAS  PubMed  Google Scholar 

  • Burrows M, Pflüger HJ (1988) Positive feedback loops from proprioceptors involved in leg movements of the locust. J Comp Physiol A 163(4):425–440

    Article  Google Scholar 

  • Büschges A (1990) Nonspiking pathways in a joint-control loop of the stick insect Carausius morosus. J Exp Biol 151(1):133–160

    Google Scholar 

  • Büschges A, Gruhn M (2008) Mechanosensory feedback in walking: from joint control to locomotor patterns. Adv Insect Physiol 34:193–230

    Article  Google Scholar 

  • Chvatal SA, Ting LH (2013) Common muscle synergies for balance and walking. Front Comput Neurosci 7:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Collin SP (1985) The central morphology of mechanoreceptor afferents in the metathoracic leg of the cockroach, Periplaneta americana (Insecta). J Neurobiol 16(4):269–282. https://doi.org/10.1002/neu.480160403

    Article  CAS  PubMed  Google Scholar 

  • Cruse H (1976) The function of the legs in the free walking stick insect, Carausius morosus. J Comp Physiol 112(2):235–262

    Article  Google Scholar 

  • Cruse H, Bartling C (1995) Movement of joint angles in the legs of a walking insect, Carausius morosus. J Insect Physiol 41(9):761–771

    Article  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6(3):300

    Article  PubMed  CAS  Google Scholar 

  • Dallmann CJ, Dürr V, Schmitz J (2016) Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proc R Soc B 283(1823):20151708

    Article  PubMed  CAS  Google Scholar 

  • Dallmann CJ, Hoinville T, Dürr V, Schmitz J (2017) A load-based mechanism for inter-leg coordination in insects. Proc R Soc B 284(1868):20171755

    Article  PubMed  Google Scholar 

  • Delcomyn F (1991) Activity and directional sensitivity of leg campaniform sensilla in a stick insect. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 168(1):113–119

    Article  CAS  Google Scholar 

  • Dickinson MH (1992) Directional sensitivity and mechanical coupling dynamics of campaniform sensilla during chordwise deformations of the fly wing. J Exp Biol 169(1):221–233

    Google Scholar 

  • Donelan JM, McVea DA, Pearson KG (2009) Force regulation of ankle extensor muscle activity in freely walking cats. J Neurophysiol 101(1):360–371

    Article  CAS  PubMed  Google Scholar 

  • Drew T, Kalaska J, Krouchev N (2008) Muscle synergies during locomotion in the cat: a model for motor cortex control. J Physiol 586(5):1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duch C, Pflüger H (1995) Motor patterns for horizontal and upside down walking and vertical climbing in the locust. J Exp Biol 198(9):1963–1976

    CAS  PubMed  Google Scholar 

  • Ekeberg O, Pearson K (2005) Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J Neurophysiol 94(6):4256–4268

    Article  PubMed  Google Scholar 

  • El Manira A, Cattaert D, Clarac F (1991) Monosynaptic connections mediate resistance reflex in crayfish (Procambarus clarkii) walking legs. J Comp Physiol A 168(3):337–349

    Article  Google Scholar 

  • Frey-Law LA, Avin KG (2013) Muscle coactivation: a generalized or localized motor control strategy? Muscle Nerve 48(4):578–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldammer J, Büschges A, Schmidt J (2012) Motoneurons, DUM cells, and sensory neurons in an insect thoracic ganglion: a tracing study in the stick insect Carausius morosus. J Comp Neurol 520(2):230–257

    Article  PubMed  Google Scholar 

  • Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89(5):2396–2405

    Article  PubMed  Google Scholar 

  • Gruhn M, Rosenbaum P, Bockemühl T, Büschges A (2016) Body side-specific control of motor activity during turning in a walking animal. eLife 5:e13799. https://doi.org/10.7554/eLife.13799

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart CB, Giszter SF (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci 24(22):5269–5282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess D, Büschges A (1997) Sensorimotor pathways involved in interjoint reflex action of an insect leg. J Neurobiol 33(7):891–913

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Büschges A (1999) Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. J Neurophysiol 81(4):1856–1865

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Bässler U (1982) Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra. Physiol Entomol 7(4):413–426

    Article  Google Scholar 

  • Höltje M, Hustert R (2003) Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects. J Exp Biol 206(16):2715–2724

    Article  PubMed  Google Scholar 

  • Hößl B, Böhm HJ, Schaber CF, Rammerstorfer FG, Barth FG (2009) Finite element modeling of arachnid slit sensilla: II. Actual lyriform organs and the face deformations of the individual slits. J Comp Physiol A 195(9):881–894

    Article  Google Scholar 

  • Hustert R, Pfluger JH, Braunig P (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. Cell Tissue Res 216(1):97–111

    Article  CAS  PubMed  Google Scholar 

  • Kaliyamoorthy S, Quinn RD, Zill SN (2005) Force sensors in hexapod locomotion. Int J Robot Res 24(7):563–574

    Article  Google Scholar 

  • Keller BR, Duke ER, Amer AS, Zill SN (2007) Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches. J Comp Physiol A 193(8):881–891

    Article  Google Scholar 

  • Kuenzi F, Burrows M (1995) Central connections of sensory neurones from a hair plate proprioceptor in the thoraco-coxal joint of the locust. J Exp Biol 198(7):1589–1601

    CAS  PubMed  Google Scholar 

  • Laurent G, Hustert R (1988) Motor neuronal receptive fields delimit patterns of motor activity during locomotion of the locust. J Neurosci 8(11):4349–4366

    Article  CAS  PubMed  Google Scholar 

  • Moran DT, Chapman KM, Ellis RA (1971) The fine structure of cockroach campaniform sensilla. J Cell Biol 48(1):155–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrain M, Ritzmann RE (1988) Analysis of proprioceptive inputs to DPG interneurons in the cockroach. J Neurobiol 19(6):552–570. https://doi.org/10.1002/neu.480190606

    Article  CAS  PubMed  Google Scholar 

  • Newland PL, Emptage NJ (1996) The central connections and actions during walking of tibial campaniform sensilla in the locust. J Comp Physiol A 178(6):749–762

    Article  CAS  PubMed  Google Scholar 

  • Noah AJ, Quimby L, Frazier FS, Zill SN (2001) Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered. J Comp Physiol A 187(10):769–784

    Article  CAS  PubMed  Google Scholar 

  • Pflüger H, Braunig P, Hustert R (1988) The organization of mechanosensory neuropiles in locust thoracic ganglia. Philos Trans R Soc Lond Ser B Biol Sci 321(1202):1–26

    Article  Google Scholar 

  • Pringle J (1938) Proprioception in insects. J Exp Biol 15(1):101–113

    Google Scholar 

  • Ridgel AL, Frazier SF, Dicaprio RA, Zill SN (1999) Active signaling of leg loading and unloading in the cockroach. J Neurophysiol 81(3):1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Ridgel AL, Frazier SF, DiCaprio RA, Zill SN (2000) Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion. J Comp Physiol A 186(4):359–374

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum P, Wosnitza A, Büschges A, Gruhn M (2010) Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus. J Neurophysiol 104(3):1681–1695

    Article  PubMed  Google Scholar 

  • Santuz A, Ekizos A, Eckardt N, Kibele A, Arampatzis A (2018) Challenging human locomotion: stability and modular organisation in unsteady conditions. Sci Rep 8(1):2740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaber CF, Gorb SN, Barth FG (2011) Force transformation in spider strain sensors: white light interferometry. J R Soc Interface 9(71):1254–1264

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindler G (1979) Funktionsmorphologische Untersuchungen zur Autotomie der Stabheuschrecke Carausius morosus Br.(Insecta: Phasmida). Zoologischer Anzeiger

  • Schmitz J (1993) Load-compensating reactions in the proximal leg joints of stick insects during standing and walking. J Exp Biol 183(1):15–33

    Google Scholar 

  • Schmitz J, Stein W (2000) Convergence of load and movement information onto leg motoneurons in insects. J Neurobiol 42(4):424–436

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Büschges A, Delcomyn F (1988) An improved electrode design for en passant recording from small nerves. Comp Biochem Physiol A Comp Physiol 91(4):769–772

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Dean J, Kittmann R (1991) Central projections of leg sense organs inCarausius morosus (Insecta, Phasmida). Zoomorphology 111(1):19–33

    Article  Google Scholar 

  • Seyfarth EA, Pflüger HJ (1984) Proprioceptor distribution and control of a muscle reflex in the tibia of spider legs. J Neurobiol 15(5):365–374

    Article  CAS  PubMed  Google Scholar 

  • Spinola S, Chapman K (1975) Proprioceptive indentation of the campaniform sensilla of cockroach legs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 96(3):257–272

    Article  Google Scholar 

  • Stein W, Schmitz J (1999) Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. J Neurophysiol 82(1):512–514

    Article  CAS  PubMed  Google Scholar 

  • Stuart D, Goslow G, Mosher C, Reinking R (1970) Stretch responsiveness of Golgi tendon organs. Exp Brain Res 10(5):463–476

    CAS  PubMed  Google Scholar 

  • Tsubouchi A, Yano T, Yokoyama TK, Murtin C, Otsuna H, Ito K (2017) Topological and modality-specific representation of somatosensory information in the fly brain. Science 358(6363):615–623

    Article  CAS  PubMed  Google Scholar 

  • Wilkens LA, Wolfe GE (1974) A new electrode design for en passant recording, stimulation and intracellular dye infusion. Comp Biochem Physiol Part A Physiol 48(2):217–220

    Article  CAS  Google Scholar 

  • Zakotnik J, Matheson T, Dürr V (2006) Co-contraction and passive forces facilitate load compensation of aimed limb movements. J Neurosci 26(19):4995–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zill SN, Moran DT (1981) The exoskeleton and insect proprioception. I. Responses of tibial campaniform sensilla to external and muscle-generated forces in the American cockroach, Periplaneta americana. J Exp Biol 91(1):1–24

    Google Scholar 

  • Zill SN, Frazier SF, Neff D, Quimby L, Carney M, DiCaprio R, Thuma J, Norton M (2000) Three-dimensional graphic reconstruction of the insect exoskeleton through confocal imaging of endogenous fluorescence. Microsc Res Tech 48(6):367–384

    Article  CAS  PubMed  Google Scholar 

  • Zill SN, Schmitz J, Büschges A (2004) Load sensing and control of posture and locomotion. Arthropod Struct Dev 33(3):273–286. https://doi.org/10.1016/j.asd.2004.05.005

    Article  PubMed  Google Scholar 

  • Zill SN, Keller BR, Duke ER (2009) Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. J Neurophysiol 101(5):2297–2304

    Article  PubMed  Google Scholar 

  • Zill SN, Büschges A, Schmitz J (2011) Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J Comp Physiol A 197:851–867

    Article  Google Scholar 

  • Zill SN, Schmitz J, Chaudhry S, Buschges A (2012) Force encoding in stick insect legs delineates a reference frame for motor control. J Neurophysiol 108(5):1453–1472. https://doi.org/10.1152/jn.00274.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Zill SN, Chaudhry S, Büschges A, Schmitz J (2013) Directional specificity and encoding of muscle forces and loads by stick insect tibial Campaniform sensilla, including receptors with round cuticular caps. Arthropod Struct Dev 42(6):455–467. https://doi.org/10.1016/j.asd.2013.10.001

    Article  PubMed  Google Scholar 

  • Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J (2014) Positive force feedback in development of substrate grip in the stick insect tarsus. Arthropod Struct Dev 43(5):441–455

    Article  PubMed  Google Scholar 

  • Zill SN, Büschges A, Schmitz J, Neff D, Chaudhry S (2015a) Common mechanisms and specializations in force detection and control in cockroaches, stick insects and Drosophila. In: Proceedings of the 45th annual meeting Society for Neuroscience; Chicago, 2015

  • Zill SN, Chaudhry S, Büschges A, Schmitz J (2015b) Force feedback reinforces muscle synergies in insect legs. Arthropod Struct Dev 44(6 Pt A):541–553. https://doi.org/10.1016/j.asd.2015.07.001

    Article  PubMed  Google Scholar 

  • Zill SN, Neff D, Chaudhry S, Exter A, Schmitz J, Büschges A (2017) Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Struct Dev 46(4):564–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J (2018) Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J Neurophysiol 120(4):1807–1823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank H.-P. Bollhagen for excellent technical assistance at the scanning electron microscope, S. Seyed-Nejadi, S. Seeliger, and M. Dübbert for providing laboratory and technical support, and Ch. Mantziaris for helpful advice and inspiring discussions. We also thank the Imaging Facility of the Cologne Biocenter for support of our study. Finally, we thank the two anonymous reviewers for their constructive criticism that helped us to improve the manuscript. We confirm that all animals were kept and handled according to the pertinent guidelines. This study was supported by DFG Bu 857/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Büschges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 KB)

Supplementary material 2 (TIFF 66195 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haberkorn, A., Gruhn, M., Zill, S.N. et al. Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect. J Comp Physiol A 205, 253–270 (2019). https://doi.org/10.1007/s00359-019-01334-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-019-01334-4

Keywords

Navigation