Skip to main content
Log in

Central projections of leg sense organs inCarausius morosus (Insecta, Phasmida)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The present study describes the central projections of leg proprioceptors important in resistance reflexes and in the control of leg movement in the stick insect. The following proprioceptors were studied: the femoral chordotonal organ and the campaniform sensilla on the proximal femur, the hair plate, the hair field and three groups of campaniform sensilla on the trochanter, and the two hair plates and four hair rows on the coxa. For comparison, single tactile hairs on the sternum, coxa, trochanter, and femur were also investigated. Afferent fibers were backfilled with cobalt and the central projections were studied in wholemounts and in sections. Results are compared with those from other insects and arthropods. Results for all three thoracic ganglia are similar. Projections of all the proprioceptors are confined to the ipsilateral half of the segmental ganglion. They all terminate in four common target areas — two each in the lateral and in the intermediate part of the hemiganglion. The two lateral areas lie rostrally and caudally in dorsal neuropile occupied by motoneuron processes. The two intermediate areas lie rostrally and caudally in midventral neuropile lateral to the ventral intermediate tract (VIT). These intermediate areas include part of the ventral coarse-grained neuropile (vcN). Target areas of different proprioceptors overlap considerably, but the intermediate projections of the campaniform sensilla lie slightly closer together than those of the other organs. In addition to these four areas, the afferent fibers of the femoral chordotonal organ (fCO) project to two medial target areas extending into neuropile medial to the VIT. Afferent fibers from the various sense organs reach these common target areas using different pathways, but these pathways share some common elements. Afferent fibers from one organ can follow several alternative pathways to the common target areas. The intermediate areas are reached by projections which form a rostral and a caudal prong extending medially in midventral neuropile. Fibers enter these rostral and caudal prongs either along the lateral margin of the ganglion (a path referred to as a lateral longitudinal bundle) or by crossing from one to the other through coarse-grained neuropile occupying the central core of each hemiganglion (a path referred to as an intermediate longitudinal bundle). Collaterals entering the dorsolateral target areas rise either directly along the margin of the neuropile or from the intermediate longitudinal bundle. The medial target areas of the fCO projections are reached by a third branch which proceeds from the margin of the ganglion medioventrally between the anterior and posterior prongs and then bifurcates. Fibers from different organs follow different routes to reach common target areas. In addition, fibers from the same organ vary in their distribution among alternative pathways. Projections from tactile hairs on the sternum, coxa, trochanter, and femur are quite different from those of the proprioceptive hairs. They proceed medially along the ventral margin of the ganglion to terminate in a loose plexus within medial parts of the ventral association center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ac :

anterior connective

aCSv, d :

anterior groups (ventral and dorsal) of trochanteral campaniform sensilla

adN :

anterior dorsal neuropile

alN :

anterior lateral neuropile

aVAC :

anterior part of ventral association center

cdl :

caudo-dorsal-lateral terminal area

CO :

chordotonal organ

CS :

campaniform sensilla

CT :

C-tract

cvi :

caudo-ventro-intermediate terminal area

cvm :

caudo-ventro-medial terminal area

cxHPv, d :

ventral and dorsal coxal hair plates (hair plates 2, 3 of Wendler 1964)

cxHR1-4 :

four rows of proprioceptive hairs on the posterior and ventral coxa, numbered from ventral to dorsal

DCI-VI :

dorsal commissures I–VI

DIT :

dorsal intermediate tract

DMT :

dorsal medial tract

dVCII :

dorsal aspect of ventral commissure II

fCO :

femoral chordotonal organ

fCS :

femoral group of campaniform sensilla

hN :

horseshoe neuropile

HP :

hair plate

ilb :

intermediate longitudinal bundle

llb :

lateral longitudinal bundle

LDT :

lateral dorsal tract

lVAC :

lateral part of ventral association center

LVT :

lateral ventral tract

mcN :

medial coarse neuropile

MDT :

medial dorsal tract

mtr :

midline trachea

MVT :

medial ventral tract

na :

nervus anterioris

ncr :

nervus cruris (main leg nerve)

nl1-5 :

nervus lateralis 1–5

np :

nervus posterioris

pc :

posterior connective

pCS :

posterior group of trochanteral campaniform sensilla

pdN :

posterior dorsal neuropile

plN :

posterior lateral neuropile

PVC :

posterior ventral commissure

rdl :

rostro-dorso-lateral terminal area

rvi :

rostro-ventro-intermediate terminal area

rvm :

rostro-ventro-medial terminal area

SMC :

supramedian commissure

tr :

trachea

trHP :

trochanteral hair plate (hair plate 1 of Wendler 1964)

trHF :

trochanteral hair field (rhomboidal hair plate of Tatar 1976)

TT :

T-tract

VCI :

ventral commissure I

vcN :

ventral coarse neuropile

VIT :

ventral intermediate tract

VLT :

ventral lateral tract

VMT :

ventral medial tract

vVAC :

ventral part of ventral association center

vVCII :

ventral aspect of ventral commissure II

References

  • Altman JS (1980) Functional organisation of insect ganglia. In: Salanki J (ed) Neurobiology of invertebrates. Adv Physiol Sci 23:537–555

  • Altman JS, Tyrer NM (1977) The locust wing hinge stretch receptors. II. Variation, alternative pathways and “mistakes” in the central arborizations. J Comp Neurol 172:431–440

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparation. Brain Res 138:359–363

    Google Scholar 

  • Bässler U (1965) Propriozeptoren am Subcoxal- und Femur-Tibia-Gelenk der StabheuschreckeCarausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung. Kybernetik 2:168–193

    Google Scholar 

  • Bässler U (1972) Der “Kniesehnenreflex” beiCarausius morosus: Übergangsfunktion und Frequenzgang. Kybernetik 11:32–50

    Google Scholar 

  • Bässler U (1976) Reversal of a reflex to a single motoneuron in the stick insectCarausius morosus. Biol Cybern 24:47–49

    Google Scholar 

  • Bässler U (1977) Sensory control of leg movement in the stick insectCarausius morosus. Biol Cybern 25:61–72

    Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Berlin

    Google Scholar 

  • Bräunig P (1982) The peripheral and central nervous organization of the locust coxo-trochanteral joint. J Neurobiol 13:413–433

    Google Scholar 

  • Bräunig P, Hustert R, Pflüger H-J (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. I. Morphology, location and innervation of internal proprioceptors of pro- and metathorax and their central projections. Cell Tissue Res 216:57–77

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. WH Freeman, San Francisco

    Google Scholar 

  • Büschges A (1989) Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects. J Exp Biol 144:81–111

    Google Scholar 

  • Büschges A, Schmitz J (1991) Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects. J Neurobiol 22:224–237

    Google Scholar 

  • Burrows M (1975) Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. J Exp Biol 62:189–219

    Google Scholar 

  • Burrows M (1987) Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. J Neurosci 7:3282–3292

    Google Scholar 

  • Burrows M, Pflüger H-J (1988) Positive feedback loops from proprioceptors involved in leg movements of the locust. J Comp Physiol A 163:425–440

    Google Scholar 

  • Burrows M, Siegler MVS (1984) The morphological diversity and receptive fields of spiking local interneurons in the locust metathoracic ganglion. J Comp Neurol 224:483–508

    Google Scholar 

  • Burrows M, Laurent GJ, Field LH (1988) Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. J Neurosci 8:3085–3093

    Google Scholar 

  • Coillot JP, Boistel J (1968) Localisation et description de récepteurs a l'étirement au niveau de l'articulation tibio-fémorale de la patte sauteuse du criquet,Schistocerca gregaria. J Insect Physiol 14:1661–1667

    Google Scholar 

  • Cruse H, Schmitz J (1983) The control system of the femur-tibia joint in the standing leg of a walking stick insectCarausius morosus. J Exp Biol 102:175–185

    Google Scholar 

  • Cruse H, Dean J, Suilmann M (1984) The contributions of diverse sense organs to the control of leg movement by a walking insect. J Comp Physiol A 154:695–705

    Google Scholar 

  • Dean J (1985) A simulation of proprioceptive input from the coxal hair rows of the stick insect: possible effect of step velocity on the representation of joint angle. In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Hamburg, pp 49–57

    Google Scholar 

  • Dean J, Wendler G (1983) Stick insect locomotion on a walking wheel: Interleg coordination of leg position. J Exp Biol 103:75–94

    Google Scholar 

  • Field LH, Pflüger H-J (1989) The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol 93A:729–743

    Google Scholar 

  • Füller H, Ernst A (1973) Die Ultrastruktur der femoralen Chordotonalorgane vonCarausius morosus BR. Zool Jb Anat 91:574–601

    Google Scholar 

  • Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140

    Google Scholar 

  • Graham D, Wendler G (1981) The reflex behaviour and innervation of the tergo-coxal retractor muscles of the stick insectCarausius morosus. J Comp Physiol 143:81–91

    Google Scholar 

  • Gregory GE (1974) Neuroanatomy of the mesothoracic ganglion of the cockroachPeriplaneta americana (L). I. The roots of the peripheral nerves. Phil Trans R Soc Lond B 267:421–465

    Google Scholar 

  • Gregory GE (1980) Alcoholic Bouin fixation of insect nervous systems for Bodian silver staining. II. Modified solutions. Stain Technol 49:151–405

    Google Scholar 

  • Hoffmann T, Bässler U (1986) Response characteristics of single trochanteral campaniform sensilla in the stick insect,Cuniculina impigra. Physiol Entomol 11:17–21

    Google Scholar 

  • Hoffmann T, Koch UT, Bässler U (1985) Physiology of the femoral chordotonal organ in the stick insect,Cuniculina impigra. J Exp Biol 114:207–223

    Google Scholar 

  • Hustert R (1978) Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194:337–351

    Google Scholar 

  • Hustert R (1985) Multisegmental integration and divergence of afferent information from single tactile hairs in a cricket. J Exp Biol 118:209–227

    Google Scholar 

  • Hustert R, Pflüger H-J, Bräunig P (1981) Distribution and specific projections of mechanoreceptors in the thorax and proximal leg joints of locusts. III. The external receptors: the campaniform sensilla. Cell Tissue Res 216:97–112

    Google Scholar 

  • Johnson SE, Murphey RK (1985) The afferent projection of mesothoracic bristle hairs in the cricket,Acheta domestica. J Comp Physiol 156:369–381

    Google Scholar 

  • Kent KS, Griffin LM (1990) Sensory organs of the thoracic legs of the mothManduca sexta. Cell Tissue Res 259:209–233

    Google Scholar 

  • Kent KS, Levine RB (1988) Neural control of leg movements in a metamorphic insect: sensory and motor elements of the larval thoracic legs inManduca sexta. J Comp Neurol 271:559–576

    Google Scholar 

  • Kittmann R (1991) Gain control in the femur-tibia feedback system of the stick insect. J Exp Biol (in press)

  • Kittmann R, Dean J, Schmitz J (1991) An atlas of the thoracic ganglia in the stick insect,Carausius morosus. Phil Trans Royal Soc Lond B 331:101–121

    Google Scholar 

  • Laurent G (1986) Thoracic intersegmental interneurones in the locust with mechanoreceptive inputs from a leg. J Comp Physiol A 159:171–186

    Google Scholar 

  • Laurent G (1987a) Parallel effects of joint receptors on motor neurones and intersegmental interneurons in the locust. J Comp Physiol 160:341–353

    Google Scholar 

  • Laurent G (1987 b) The morphology of a population of thoracic intersegmental interneurones in the locust. J Comp Neurol 256:412–429

    Google Scholar 

  • Laurent G (1988) Local circuits underlying excitation and inhibition of intersegmental interneurones in the locust. J Comp Physiol A 162:145–157

    Google Scholar 

  • Laurent G, Hustert R (1988) Motor neuronal receptive fields delimit patterns of motor activity during locomotion of the locust. J Neurosci 8:4349–4366

    Google Scholar 

  • Laurent G, Richard D (1986) The organization and role during locomotion of the proximal musculature of the cricket foreleg. I. Anatomy and innervation. J Exp Biol 123:255–283

    Google Scholar 

  • Matheson T, Field LH (1990) Innervation of the metathoracic femoral chordotonal organ of Locusta migratoria. Cell Tissue Res 259:551–560

    Google Scholar 

  • Murphey RK (1985) A second cercal sensory system: bristle hairs and the interneurons they activate. J Comp Physiol 156:357–368

    Google Scholar 

  • Murphey RK, Bacon JP, Johnson SE (1985) Ectopic neurons and the organization of insect sensory systems. J Comp Physiol 156:381–390

    Google Scholar 

  • Murrain M, Ritzmann RE (1988) Analysis of proprioceptive inputs to DPG interneurons in the cockroach. J Neurobiol 19:552–570

    Google Scholar 

  • Obermayer M, Strausfeld NJ (1980) Silver-staining cobalt sulfide deposits within neurons of intact ganglia. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Insect nervous system. Springer, Berlin, pp 403–427

    Google Scholar 

  • Pearson KG, Wong RKS, Fourtner CR (1976) Connexions between hair-plate afferents and motorneurons in the cockroach leg. J Exp Biol 64:251–266

    Google Scholar 

  • Pflüger H-J (1980) Central nervous projections of sternal trichoid sensilla in locusts. Naturwiss 67:316

    Google Scholar 

  • Pflüger H-J (1984) The large fourth abdominal intersegmental interneuron: a new type of wind-sensitive ventral cord interneuron in locusts. J Comp Neurol 222:343–357

    Google Scholar 

  • Pflüger H-J, Tautz J (1982) Air movement sensitive hairs and interneurons inLocusta migratoria. J Comp Physiol 145:369–380

    Google Scholar 

  • Pflüger H-J, Bräunig P, Hustert R (1981) Distribution and specific projections of mechanoreceptors in the thorax and proximal leg joints of locusts. II. The external mechanoreceptors: hair plates and tactile hairs. Cell Tissue Res 216:79–96

    Google Scholar 

  • Pflüger H-J, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropiles in locust thoracic ganglia. Phil Trans R Soc Lond B 321:1–26

    Google Scholar 

  • Pipa RL, Cook EF, Richards AG (1959) Studies on the hexapod nervous system. II. The histology of the thoracic ganglia of the adult cockroach,Periplaneta americana (L). J Comp Neurol 113:401–433

    Google Scholar 

  • Rehbein H (1976) Auditory neurons in the ventral cord of the locust: morphological and functional properties. J Comp Physiol 110:233–250

    Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262

    Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215

    Google Scholar 

  • Schmitz J (1985) Control of the leg joints in stick insects: differences in the reflex properties between the standing and the walking states. In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Hamburg, 27–32

    Google Scholar 

  • Schmitz J (1986 a) Properties of the feedback system controlling the coxa-trochanter joint in the stick insectCarausius morosus. Biol Cybern 55:35–42

    Google Scholar 

  • Schmitz J (1986 b) The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insectCarausius morosus. Biol Cybern 55:25–34

    Google Scholar 

  • Schmitz J (1986c) Was messen die Borstenfelder vonCarausius morosus? In: Elsner N, Rathmeyer W (eds) Sensomotorik, Identifizierte Neurone. Thieme, Stuttgart, p 44

    Google Scholar 

  • Seyfarth E-A, Gnatzy W, Hammer K (1990) Coxal hair plates in spiders: physiology, fine structure, and specific central projections. J Comp Physiol A 166:633–642

    Google Scholar 

  • Siegler MVS, Burrows M (1983) Spiking local interneurons as primary integrators of mechanosensory information in the locust. J Neurophysiol 50:1281–1295

    Google Scholar 

  • Siegler MVS, Burrows M (1984) The morphology of two groups of spiking local interneurons in the metathoracic ganglion of the locust. J Comp Neurol 224:463–482

    Google Scholar 

  • Storrer J, Bässler U, Mayer S (1986) Motoneurone im Meso- and Metathorakalganglion der Stabheuschrecke,Carausius morosus. Zool Jahrb Abt Allg Zool Phys 80:359–374

    Google Scholar 

  • Strausfeld NJ (1976) An atlas of an insect brain. Springer, Berlin

    Google Scholar 

  • Tatar G (1976) Mechanische Sinnesorgane an den Beinen der StabheuschreckeCarausius morosus. Diplomarbeit, Universität Köln

  • Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Phil Trans R Soc Lond B 297:91–123

    Google Scholar 

  • Weeks JC, Jacobs GA (1987) A reflex behavior mediated by monosynaptic connections between hair afferents and motoneurons in the larval tobacco hornworm,Manduca sexta. J Comp Physiol A 160:315–329

    Google Scholar 

  • Wendler G (1964) Laufen und Stehen der StabheuschreckeCarausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vgl Physiol 48:198–250

    Google Scholar 

  • Wendler G (1972) Körperhaltung bei der Stabheuschrecke: Ihre Beziehung zur Schwereorientierung und Mechanismen ihrer Regelung. Verh Dtsch Zool Ges 60:214–219

    Google Scholar 

  • Wilson JA (1979) The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy. J Neurobiol 10:41–65

    Google Scholar 

  • Zawarzin A (1924) Zur Morphologie der Nervenzentren des Bauchmarks der Insekten. Z Wiss Zool 122:323–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, J., Dean, J. & Kittmann, R. Central projections of leg sense organs inCarausius morosus (Insecta, Phasmida). Zoomorphology 111, 19–33 (1991). https://doi.org/10.1007/BF01632707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01632707

Keywords

Navigation