Skip to main content
Log in

Pattern recognition in field crickets: concepts and neural evidence

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Since decades the acoustic communication behavior of crickets is in the focus of neurobiology aiming to analyze the neural basis of male singing and female phonotactic behavior. For temporal pattern recognition several different concepts have been proposed to elucidate the possible neural mechanisms underlying the tuning of phonotaxis in females. These concepts encompass either some form of a feature detecting mechanism using cross-correlation processing, temporal filter properties of brain neurons or an autocorrelation processing based on a delay-line and coincidence detection mechanism. Current data based on intracellular recordings of auditory brain neurons indicate a sequential processing by excitation and inhibition in a local auditory network within the protocerebrum. The response properties of the brain neurons point towards the concept of an autocorrelation-like mechanism underlying female pattern recognition in which delay-lines by long lasting inhibition may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AN:

Ascending neuron

AP:

Action potential

BNC:

Brain neuron class

B-LC:

Brain neuron, local, contralateral axon

B-LI:

Brain neuron, local, ipsilateral axon

CNS:

Central nervous system

DN:

Descending neuron

ON:

Omega neuron

PSP:

Post synaptic potential

References

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16(4):443–467

    Article  Google Scholar 

  • Bentley D (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol A 116(1):19–38

    Article  Google Scholar 

  • Bullock TH (1961) The problem of recognition in an analyzer made of neurons. In: Rosenblith WA (ed) Sensory communication. MIT Press, Massachusetts, pp 717–724

    Google Scholar 

  • Buonomano DV (2000) Decoding temporal information: a model based on short-term synaptic plasticity. J Neurosci 20(3):1129–1141

    CAS  PubMed  Google Scholar 

  • Bush SL, Schul J (2006) Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. J Comp Physiol A 192(2):113–121

    Article  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brainstem. Proc Nat Acad Sci 85(21):8311–8315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clemens J, Hennig RM (2013) Computational principles underlying the recognition of acoustic signals in insects. J Comp Neurosci 35(1):75–85

    Article  Google Scholar 

  • Crawford JD (1997) Feature-detecting auditory neurons in the brain of a sound-producing fish. J Comp Physiol A 180(5):439–450

    Article  CAS  PubMed  Google Scholar 

  • Cros E, Hedwig B (2014) Auditory pattern recognition and steering in the cricket Teleogryllus oceanicus. Physiol Entomol 39(1):19–27

    Article  Google Scholar 

  • Doherty JA (1985) Trade-off phenomena in calling song recognition and phonotaxis in the cricket, Gryllus bimaculatus (Orthoptera, Gryllidae). J Comp Physiol A 156(6):787–801

    Article  Google Scholar 

  • Edwards CJ, Leary CJ, Rose GJ (2007) Counting on inhibition and rate-dependent excitation in the auditory system. J Neurosci 27(49):13384–13392

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insect and anurans. University of Chicago Press, Illinois

    Google Scholar 

  • Haskell P (1956) Hearing in certain Orthoptera I. Physiology of sound receptors. J Exp Biol 33(4):756–766

    Google Scholar 

  • Hedwig B (2000) Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. J Neurophysiol 83(2):712

    CAS  PubMed  Google Scholar 

  • Hedwig B (2006) Pulses, patterns and paths: neurobiology of acoustic behavior in crickets. J Comp Physiol A 192(7):677–689

    Article  Google Scholar 

  • Hedwig B, Poulet JFA (2004) Complex auditory behavior emerges from simple reactive steering. Nature 430(7001):781–785

    Article  CAS  PubMed  Google Scholar 

  • Hedwig B, Poulet JFA (2005) Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system. J Exp Biol 208(5):915–927

    Article  CAS  PubMed  Google Scholar 

  • Hennig RM (2003) Acoustic feature extraction by cross-correlation in crickets? J Comp Physiol A 189(8):589–598

    Article  CAS  Google Scholar 

  • Hennig R, Otto D (1996) Distributed control of song pattern generation in crickets revealed by lesions to the thoracic ganglia. Zoology 99:268–276

    Google Scholar 

  • Hoy R (1978) Acoustic communication in crickets: a model system for the study of feature detection. Fed Proc 37(10):2316–2323

    CAS  PubMed  Google Scholar 

  • Hoy RR, Hahn J, Paul CR (1977) Hybrid cricket auditory behavior: evidence for genetic coupling in animal communication. Science 195:82–84

    Article  CAS  PubMed  Google Scholar 

  • Huber F (1962) Central nervous control of sound production in crickets and some speculations on its evolution. Evolution 16(4):429–442

    Article  Google Scholar 

  • Huber F, Moore TE, Loher W (1989) Cricket behavior and neurobiology. Cornell University Press, New York

    Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. TINS 23(5):216–222

    CAS  PubMed  Google Scholar 

  • Konishi M (1991) Deciphering the brain’s codes. Neural Comput 3(1):1–18

    Article  Google Scholar 

  • Kostarakos K, Hedwig B (2012) Calling song recognition in female crickets: temporal tuning of Identified brain neurons matches behavior. J Neurosci 32(28):9601–9912

    Article  CAS  PubMed  Google Scholar 

  • Large EW, Crawford JD (2002) Auditory temporal computation: interval selectivity based on post-inhibitory rebound. J Comput Neurosci 13(2):125–142

    Article  PubMed  Google Scholar 

  • Moiseff A, Hoy R (1983) Sensitivity to ultrasound in an identified auditory interneuron in the cricket: a possible neural link to phonotactic behavior. J Comp Physiol A 152(2):155–167

    Article  Google Scholar 

  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14(4):481–487

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski T, Stumpner A (2013) Processing of ultrasound in a bush cricket’s brain. Physiol Entomol 38:33–34

    Article  Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429–432

    Article  CAS  PubMed  Google Scholar 

  • Poulet JFA, Hedwig B (2005) Auditory orientation in crickets: pattern recognition controls reactive steering. Proc Nat Acad Sci 102(43):15665–15669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poulet JFA, Hedwig B (2006) The cellular basis of a corollary discharge. Science 311(5760):518–522

    Article  CAS  PubMed  Google Scholar 

  • Priebe NJ, Ferster D (2012) Mechanisms of neuronal computation in mammalian visual cortex. Neuron 75(2):194–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regen J (1913) Über die Anlockung des Weibchens von Gryllus campestris L durch telephonisch übertragene Stridulationslaute des Männchens. Pflüg Arch Europ J Physiol 155(1):193–200

    Article  Google Scholar 

  • Reiss R (1964) A theory of resonant networks. In: Reiss R (ed) Neural theory and modeling. Stanford University Press, CA, pp 105–137

    Google Scholar 

  • Ronacher B, Krahe R, Hennig RM (2000) Effects of signal duration on the masked communication signal by the grasshopper Chorthippus biguttulus. J Comp Physiol A 186:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Rose G, Capranica RR (1983) Temporal selectivity in the central auditory system of the leopard frog. Science 219(4588):1087–1089

    Article  CAS  PubMed  Google Scholar 

  • Rose GJ, Leary CJ, Edwards CJ (2011) Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning. J Comp Physiol A 197:97–108

    Article  Google Scholar 

  • Samuel L, Stumpner A, Atkins G, Stout S (2013) Processing of model calling songs by the prothoracic AN2 neurone and phonotaxis are significantly correlated in individual female Gryllus bimaculatus. Physiol Entomol 38:344–354

    Article  CAS  Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155(2):171–185

    Article  Google Scholar 

  • Schildberger K (1985) Recognition of temporal patterns by identified auditory neurons in the cricket brain. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey Verlag, Berlin, pp 41–49

    Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis II. Modulation of auditory responses during locomotion. J Comp Physiol A 163(5):633–640

    Article  Google Scholar 

  • Schildberger K, Huber F, Wohlers D (1989) Central auditory pathway: neuronal correlates of phonotactic behavior. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, New York, pp 423–458

    Google Scholar 

  • Schöneich S, Hedwig B (2011) Neural basis of singing in crickets: central pattern generation in abdominal ganglia. Naturwissenschaften 98:1069–1073

    Article  PubMed  Google Scholar 

  • Schöneich S, Hedwig B (2012) Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer). Brain Behav 2(6):707–725

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439(7079):978–982

    Article  CAS  PubMed  Google Scholar 

  • Stout J, Stumpner A, Jeffrey J, Samuel L, Atkins G (2011) Response properties of the prothoracic AN2 auditory interneurone to model calling songs in the cricket Gryllus bimaculatus. Physiol Entomol 36:343–359

    Article  Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behavior of the cricket II. Simplicity of calling-song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol A 146(3):361–378

    Article  Google Scholar 

  • von Helversen D, von Helversen O (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? J Comp Physiol A 177:767–774

    Article  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37(20):464–476

    Article  Google Scholar 

  • Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, New York, pp 310–339

    Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol A 146(2):161–173

    Article  Google Scholar 

  • Zorovic M, Hedwig B (2011) Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. J Neurophysiol 105(5):2181–2194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Matthias Hennig for his constructive criticism and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Hedwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostarakos, K., Hedwig, B. Pattern recognition in field crickets: concepts and neural evidence. J Comp Physiol A 201, 73–85 (2015). https://doi.org/10.1007/s00359-014-0949-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0949-4

Keywords

Navigation