Skip to main content
Log in

Use of a light-dependent magnetic compass for y-axis orientation in European common frog (Rana temporaria) tadpoles

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We provide evidence for the use of a magnetic compass for y-axis orientation (i.e., orientation along the shore-deep water axis) by tadpoles of the European common frog (Rana temporaria). Furthermore, our study provides evidence for a wavelength-dependent effect of light on magnetic compass orientation in amphibians. Tadpoles trained and then tested under full-spectrum light displayed magnetic compass orientation that coincided with the trained shore-deep water axes of their training tanks. Conversely, tadpoles trained under long-wavelength (≥500 nm) light and tested under full-spectrum light, and tadpoles trained under full-spectrum light and tested under long-wavelength (≥500 nm) light, exhibited a 90° shift in magnetic compass orientation relative to the trained y-axis direction. Our results are consistent with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength (≥500 nm) light is due to a direct effect of light on the underlying magnetoreception mechanism. These findings also show that wavelength-dependent effects of light do not compromise the function of the magnetic compass under a wide range of natural lighting conditions, presumably due to a large asymmetry in the relatively sensitivity of antagonistic short- and long-wavelength inputs to the light-dependent magnetic compass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler K (1970) The role of extraoptic photoreceptors in amphibian rhythms and orientation: a review. J Herpetol 4(3–4):99–112

    Article  Google Scholar 

  • Adler K (1976) Extraocular photoreception in amphibians. Photochem Photobiol 23(4):275–298. doi:10.1111/j.1751-1097.1976.tb07250.x

    Article  CAS  Google Scholar 

  • Adler K, Taylor DH (1973) Extraocular perception of polarized light by orienting salamanders. J Comp Physiol 87:203–212

    Article  Google Scholar 

  • Auburn J, Taylor DH (1979) Polarized light perception and orientation in larval bullfrogs, Rana catesbeiana. Anim Behav 27:658–668. doi:10.1016/0003-3472(79)90003-4

    Article  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, New York

    Google Scholar 

  • Bertolucci C, Foà A (2004) Extraocular photoreception and circadian entrainment in nonmammalian vertebrates. Chronobiol Int 21(4–5):501–519. doi:10.1081/CBI-120039813

    Article  PubMed  Google Scholar 

  • Biskup T, Schleicher E, Okafuji A, Link G, Hitomi K, Getzoff ED, Weber S (2009) Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. Angew Chem Int Ed 48(2):404–407. doi:10.1002/anie.200803102

    Article  CAS  Google Scholar 

  • Deutschlander ME, Borland SC, Phillips JB (1999a) Extraocular magnetic compass in newts. Nature 400:324–325. doi:10.1038/22450

    Article  PubMed  CAS  Google Scholar 

  • Deutschlander ME, Phillips JB, Borland SC (1999b) The case for light-dependent magnetic orientation in animals. J Exp Biol 202:891–908

    PubMed  Google Scholar 

  • Deutschlander ME, Phillips JB, Borland SC (2000) Magnetic compass orientation in the eastern red-spotted newt, Notophthalmus viridescens: rapid acquisition of the shoreward axis. Copeia 2000(2):413–419

    Article  Google Scholar 

  • Diego-Rasilla FJ, Phillips JB (2007) Magnetic compass orientation in larval Iberian green frogs, Pelophylax perezi. Ethology 113:474–479. doi:10.1111/j.1439-0310.2007.01334.x

    Article  Google Scholar 

  • Diego-Rasilla FJ, Luengo RM, Phillips JB (2010) Light-dependent magnetic compass in Iberian green frog tadpoles. Naturwissenschaften 97(12):1077–1088. doi:10.1007/s00114-010-0730-7

    Article  PubMed  CAS  Google Scholar 

  • Dodt E, Heerd E (1962) Mode of action of pineal nerve fibers in frogs. J Neurophysiol 25:405–429

    PubMed  CAS  Google Scholar 

  • Eakin R (1961) Photoreceptors in the amphibian frontal organ. P Natl Acad Sci USA 47:1084–1088

    Article  CAS  Google Scholar 

  • Eakin RM, Quay WB, Westfall JA (1963) Cytological and cytochemical studies on the frontal and pineal organs of the treefrog, Hyla regilla. Z Zellforsch mik Ana 59:663–683

    Article  CAS  Google Scholar 

  • Eldred WD, Nolte J (1978) Pineal photoreceptors: evidence for a vertebrate visual pigment with two physiologically active states. Vis Res 18:29–32. doi:10.1016/0042-6989(78)90073-1

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DE (1967) Sun-compass orientation in anurans. In: Storm RM (ed) Animal orientation and navigation. Oregon State University Press, Corvallis, pp 21–34

    Google Scholar 

  • Ferguson DE, Landreth HF (1966) Celestial orientation of Fowler’s toad (Bufo fowleri). Behaviour 26:105–123

    Article  Google Scholar 

  • Ferguson DE, Landreth HF, Turnipseed MR (1965) Astronomical orientation of the southern cricket frog, Acris gryllus. Copeia 1:58–66

    Article  Google Scholar 

  • Ferguson DE, Landreth HF, McKeown JP (1967) Sun compass orientation of the northern cricket frog (Acris crepitans). Anim Behav 15:45–53

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DE, McKeown JP, Bosarge OS, Landreth HF (1968) Sun-compass orientation of bull-frogs. Copeia 1968:230–235

    Article  Google Scholar 

  • Freake MJ, Phillips JB (2005) Light-dependent shift in bullfrog tadpole magnetic compass orientation: evidence for a common magnetoreception mechanism in anuran and urodele amphibians. Ethology 111(3):241–254. doi:10.1111/j.1439-0310.2004.01067.x

    Article  Google Scholar 

  • Freake MJ, Borland SC, Phillips JB (2002) Use of a magnetic compass for Y-axis orientation in larval bullfrogs, Rana catesbeiana. Copeia 2002(2):466–471

    Article  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Harkey GA, Semlitsch RD (1988) Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1988:1001–1007

    Article  Google Scholar 

  • Justis CS, Taylor DH (1976) Extraocular photoreception and compass orientation in larval bullfrogs, Rana catesbeiana. Copeia 1976:98–105

    Article  Google Scholar 

  • Kelly DE (1962) Pineal organs: photoreception, secretion and development. Amer Sci 50:597–625

    Google Scholar 

  • Kelly DE, Smith SW (1964) Fine structure of the pineal organs of the adult frog, Rana Pipiens. J Cell Biol 22:653–674

    Article  PubMed  CAS  Google Scholar 

  • Korf HW, Liesner R, Meissl H, Kirk A (1981) Pineal complex of the clawed toad, Xenopus laevis Daud: structure and function. Cell Tissue Res 216(1):113–130. doi:10.1007/bf00234548

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, Terakita A (2004) Bistable UV pigment in the lamprey pineal. P Natl Acad Sci USA 101(17):6687–6691. doi:10.1073/pnas.0400819101

    Article  CAS  Google Scholar 

  • Landreth HF, Ferguson DE (1967a) Newt orientation by sun-compass. Nature 215:516–518

    Article  Google Scholar 

  • Landreth HF, Ferguson DE (1967b) Newts: sun-compass orientation. Science 158(3807):1459–1461. doi:10.1126/science.158.3807.1459

    Article  PubMed  CAS  Google Scholar 

  • Lannoo MJ (1999) Integration: nervous and sensory systems. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 149–169

    Google Scholar 

  • Mardia KV, Jupp PE (2000) Directional Statistics. Wiley, New York

    Google Scholar 

  • Mathis U, Schaeffel F, Howland HC (1988) Visual optics in toads (Bufo americanus). J Comp Physiol A 163(2):201–213. doi:10.1007/bf00612429

    Article  PubMed  CAS  Google Scholar 

  • McKeown JP (1968) The ontogenetic development of Y-axis orientation in four species of anurans. Unpublished Ph.D. dissertation, Mississippi State University, Mississippi

  • Phillips JB (1986) Magnetic compass orientation in the Eastern red-spotted newt (Notophthalmus viridescens). J Comp Physiol A 158:103–109

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB, Borland SC (1992a) Behavioral evidence for the use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144. doi:10.1038/359142a0

    Article  Google Scholar 

  • Phillips JB, Borland SC (1992b) Wavelength-specific effects of light on magnetic compass orientation of the eastern red-spotted newt (Notophthalmus viridescens). Ethol Ecol Evol 4:33–42

    Article  Google Scholar 

  • Phillips JB, Deutschlander ME, Freake MJ, Borland SC (2001) The role of extraocular photoreceptors in newt magnetic compass orientation: evidence for parallels between light–dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 204:2543–2552

    PubMed  CAS  Google Scholar 

  • Phillips JB, Jorge PE, Muheim R (2010) Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J R Soc Interface 7(Suppl 2):S241–S256. doi:10.1098/rsif.2009.0459.focus

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-García L, Diego-Rasilla FJ (2006) Use of a magnetic compass for Y-axis orientation in premetamorphic newts (Triturus boscai). J Ethol 24(2):111–116. doi:10.1007/s10164-005-0169-z

    Article  Google Scholar 

  • Rubens SM (1945) Cube–surface coil for producing a uniform magnetic field. Rev Sci Instrum 16:243–245

    Article  Google Scholar 

  • Russell AP, Bauer AM, Johnson MK (2005) Migration in amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. In: Elewa AMT (ed) Migration of organisms: climate, geography, ecology. Springer, Berlin, pp 151–203

    Chapter  Google Scholar 

  • Sivak JG, Warburg MR (1983) Changes in the optical properties of the eye during metamorphosis of an anuran, Pelobates syriacus. J Comp Physiol A 150:329–332

    Article  Google Scholar 

  • Stebbins RC, Cohen NW (1997) A natural history of amphibians. Princeton Univesity Press, Princenton

    Google Scholar 

  • Taylor DH (1972) Extra-optic photoreception and compass orientation in larval and adult salamanders (Ambystoma tigrinum). Anim Behav 20:233–236

    Article  PubMed  CAS  Google Scholar 

  • Taylor DH, Adler K (1973) Spatial orientation by salamanders using plane-polarized light. Science 181:285–287

    Article  PubMed  CAS  Google Scholar 

  • Taylor DH, Auburn J (1978) Orientation of amphibians by linearly polarized light. In: Schmidt-Koenig K, Keeton W (eds) Animal migration, navigation and homing. Springer, Berlin, pp 334–346

    Google Scholar 

  • Taylor DH, Ferguson DE (1970) Extraoptic celestial orientation in the southern cricket frog Acris gryllus. Science 168:390–392

    Article  PubMed  CAS  Google Scholar 

  • Tomson OH, Ferguson DE (1972) Y-axis orientation in larvae and juveniles of three species of Ambystoma. Herpetologica 28:6–9

    Google Scholar 

  • Ultsch GR, Bradford DF, Freda J (1999) Physiology: coping with the environment. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 189–214

    Google Scholar 

  • Vígh B, Manzano MJ, Zádori A, Frank CL, Lukáts A, Röhlich P, Szél A, Dávid C (2002) Nonvisual photoreceptors of the deep brain, pineal organs and retina. Histol Histopathol 17:555–590

    PubMed  Google Scholar 

  • Wada S, Kawano-Yamashita E, Koyanagi M, Terakita A (2012) Expression of UV-sensitive parapinopsin in the iguana parietal eyes and its implication in UV-sensitivity in vertebrate pineal-related organs. PLoS ONE 7(6):e39003. doi:10.1371/journal.pone.0039003

    Article  PubMed  CAS  Google Scholar 

  • Wells DK (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Zug JR, Vitt LJ, Caldwell JP (2001) Herpetology: an introductory biology of amphibians and reptiles, 2nd edn. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgments

The Cantabria autonomous government (Dirección General de Montes y Conservación de la Naturaleza) granted the necessary permits for the study. We sincerely thank Marcos Diego-Gutiérrez for invaluable assistance during this study. Comments by Michael Painter improved the manuscript. J.P. was supported by a grant from the NSF (USA) IOS 07-48175. The experiments reported herein comply with the current laws of Spain. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Diego-Rasilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diego-Rasilla, F.J., Luengo, R.M. & Phillips, J.B. Use of a light-dependent magnetic compass for y-axis orientation in European common frog (Rana temporaria) tadpoles. J Comp Physiol A 199, 619–628 (2013). https://doi.org/10.1007/s00359-013-0811-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0811-0

Keywords

Navigation