Skip to main content
Log in

Pineal complex of the clawed toad, Xenopus laevis Daud.: Structure and function

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The morphological and physiological properties of the pineal complex of Xenopus laevis were investigated in larval, juvenile and adult animals.

In a representative majority of adult X. laevis, the frontal organ does not display signs of degeneration. Fully differentiated frontal organs contain photoreceptors typical of the pineal complex of lower vertebrates. By means of the acetylcholinesterase (AChE)-reaction approximately 30 neurons of two different types were demonstrated in the frontal organ. The frontal-organ nerve is composed of approximately 10 myelinated and 40 unmyelinated nerve fibers. The neuropil areas of the frontal organ are generally similar to the corresponding structures of the intracranial epiphysis.

The neuronal apparatus of the epiphysis cerebri of X. laevis consists of (i) photoreceptor cells, (ii) ∼100 AChE-positive neurons, (iii) complex neuropil areas, and (iv) a pineal tract formed by ∼10 myelinated and ∼100 unmyelinated nerve fibers. Some of them exhibit granular inclusions indicating that pinealopetal elements may enter the pineal complex of X. laevis via this pathway. The topography of the pineal tract of X. laevis differs considerably from that in ranid species. The most conspicuous element of the plexiform zones is the ribbon synapse. The basal processes of the photoreceptor cells may be presynaptic elements of simple, tangential, dyad or triad synaptic contacts. Conventional synapses were observed only occasionally.

Electrophysiological recordings revealed that the pineal complex of Xenopus laevis is directly sensitive to light. In response to light stimuli, two types of responses, achromatic and chromatic, were recorded from the nerve of the frontal organ. In contrast, the epiphysis exhibited only achromatic units. The opposed color mechanism of the chromatic response showed a maximum sensitivity at approximately 360 nm for the inhibitory and at 520 nm for the excitatory event. The action spectrum of the achromatic response of the epiphysis and the frontal organ peaked between 500 and 520 nm and showed no Purkinje-shift during dark adaptation. The functional significance of these phenomena is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagnara JT (1964) Independent actions of pineal and hypophysis in the regulation of chromatophores of anuran larvae. Gen Comp Endocrinol 4:299–303

    Google Scholar 

  • Bagnara JT (1965) Pineal regulation of body blanching in amphibian larvae. Progr Brain Res 10:489–506

    Google Scholar 

  • Dayrhuber H (1972) Über die Synapsenformen und das Vorkommen von Acetylcholinesterase in der Epiphyse von Bombina variegata L (Anura). Z Zellforsch 126:278–296

    Google Scholar 

  • Dartnall HJA (1953) The interpretation of spectral sensitivity curves. Br med Bull 9:24–30

    Google Scholar 

  • Dartnall HJA (1956) Further observations on the visual pigments of the clawed toad, Xenopus laevis. J Physiol 134:327–338

    Google Scholar 

  • Denton EJ, Pirenne MH (1954) The visual sensitivity of the toad Xenopus laevis. J Physiol 125:181–207

    Google Scholar 

  • Biederen JHB (1975) A possible functional relationship between the subcommissural organ and the pineal complex and the lateral eyes in Rana esculenta and Rana temporaria. Cell Tissue Res 158:37–60

    Google Scholar 

  • Dodt E (1963) Reversible Umsteuerung lichtempfindlicher Systeme bei Pflanzen und Tieren. Experientia 19:53–56

    Google Scholar 

  • Dodt E, Heerd E (1962) Mode of action of pineal nerve fibers in frogs. J Neurophysiol 25:405–429

    Google Scholar 

  • Dodt E, Jacobson M (1963) Photosensitivity of a localized region of the frog's diencephalon. J Neurophysiol 26:752–758

    Google Scholar 

  • Dodt E, Morita Y (1964) Purkinje-Verschiebung, absolute Schwelle und adaptives Verhalten einzelner Elemente der intracraniellen Anurenepiphyse. Vision Res 4:413–421

    Google Scholar 

  • Dodt E, Ueck M, Oksche A (1971) Relation of structure and function: The pineal organ of lower vertebrates. In: Kruta V (ed) J Purkinjě Centenary Symposium Prag 1969. Brno University JE Purkinjě

    Google Scholar 

  • Donley CS, Meissl H (1979) Characteristics of slow potentials from the frog epiphysis (Rana esculenta); possible mass photoreceptor potentials. Vision Res 19:1343–1349

    Google Scholar 

  • Eakin RM (1961) Photoreceptors in the amphibian frontal organ. Proc Natl Acad Sci (Wash) 47:1084–1088

    Google Scholar 

  • Eldred WD, Nolte J (1979) Pineal photoreceptors: evidence for a vertebrate visual pigment with two physiological active states. Vision Res 18:29–32

    Google Scholar 

  • Eldred WD, Finger TE, Nolte J (1980) Central projections from the frontal organ of Rana pipiens, as demonstrated by the anterograde transport of horseradish peroxidase. Cell Tissue Res 211:215–222

    Google Scholar 

  • Flight WFG (1973) Observations on the pineal ultrastructure of the urodele, Diemictylus viridescens viridescens. Proc Kon Ned Akad Wet Ser C 76

  • Haffner K von (1950) Über die progressive und regressive Entwicklung der Pinealblase (Parietalorgan) des Krallenfrosches (Xenopus laevis Daud). Verh Zool Gesell, pp 93–100

  • Hamasaki DI (1970) Interaction of excitation and inhibition in the stirnorgan of the frog. Vision Res 10:307–316

    Google Scholar 

  • Hamasaki DI, Esserman L (1976) Neural activity of the frog's frontal organ during steady illumination. J comp Physiol 109:279–285

    Google Scholar 

  • Hamasaki DI, Eder DJ (1977) Adaptive radiation of the pineal system. In: Crescitelli F (ed) Handbook of Sensory Physiology. Vol VII/5 The visual system in vertebrates. Springer, Berlin Heidelberg NewYork, pp 497–548

    Google Scholar 

  • Hartwig HG, Baumann Ch (1974) Evidence for photosensitive pigments in the pineal complex of the frog. Vision Res 14:597–598

    Google Scholar 

  • Hogben L, Slome D (1931) The pigmentary effector system. VI. The dual character of endocrine coordination in amphibian color change. Proc Roy Soc B 108:10–53

    Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct coloring” thiocholine method for cholinesterase. J Histochem Cytochem 12:219–221

    Google Scholar 

  • Korf HW (1976) Histological, histochemical and electron microscopical studies on the nervous apparatus of the pineal organ in the tiger salamander, Ambystoma tigrinum. Cell Tissue Res 174:475–497

    Google Scholar 

  • Kreht H (1940) Die markhaltigen Fasersysteme im Gehirn der Anuren und Urodelen und ihre Myelogenie; zugleich ein kritischer Beitrag zu den Flechsigschen myelogenetischen Grundgesetzen.II. Kleinhirn, Mittelhirn, Zwischenhirn und Endhirn. Z mikr anat Forsch 48:191–286

    Google Scholar 

  • Meissl H, Donley CS (1980) Change of threshold after light-adaptation of the chromatic response of the frog's pineal organ (stirnorgan). Vision Res 20:379–383

    Google Scholar 

  • Morita Y, Dodt E (1965) Nervous activity of the frog's epiphysis cerebri in relation to illumination. Experientia 21:221–222

    Google Scholar 

  • Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) Handbook of Sensory Physiology. Vol VII/5 The visual system in vertebrates. Spinger, Berlin Heidelberg New York, pp 193–274

    Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis Daudin. North Holland Publ Comp, Amsterdam

    Google Scholar 

  • Oksche A (1955) Untersuchungen über die Nervenzellen und Nervenverbindungen des Stirnorgans, der Epiphyse und des Subkommissuralorgans bei anuren Amphibien. Morph Jb 95:393–425

    Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenholme GEW, Knight J (eds) The pineal gland. A Ciba Foundation Symposium. Churchill-Livingstone, Edinburgh London, pp 127–146

    Google Scholar 

  • Oksche A, von Harnack M (1963) Elektronenmikroskopische Untersuchungen am Stirnorgan von Anuren (Zur Frage der Lichtrezeptoren). Z Zellforsch 59:239–288

    Google Scholar 

  • Oksche A, Vaupel-von Harnack M (1965) Elektronenmikroskopische Untersuchungen an den Nervenbahnen des Pinealkomplexes von Rana esculenta L. Z Zellforsch 68:389–426

    Google Scholar 

  • Omura Y, Ali MA (1980) Responses of pineal photoreceptors in the brook and rainbow trout. Cell Tissue Res 208:111–122

    Google Scholar 

  • Parker GH (1948) Animal colour changes and their neurohumors. Univ Press Cambridge

    Google Scholar 

  • Paul E, Hartwig HG, Oksche A (1971) Neurone und zentralnervöse Verbindungen des Pinealorgans der Anuren. Z Zellforsch 112:466–493

    Google Scholar 

  • Ueck M (1968) Ultrastruktur des pinealen Sinnesapparates bei einigen Pipidae und Discoglossiden. Z Zellforsch 92:452–476

    Google Scholar 

  • Ueck M (1979) Innervation of the vertebrate pineal. Progr Brain Res 52:45–88

    Google Scholar 

  • Wake K, Ueck M, Oksche A (1974) Acetylcholinesterase containing nerve cells in the pineal complex and subcommissural area of the frogs, Rana ridibunda and Rana esculenta. Cell Tissue Res 154:423–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are indebted to Professors E. Dodt and A. Oksche for initiating the study and critical reading of the manuscript

Supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korf, H.W., Liesner, R., Meissl, H. et al. Pineal complex of the clawed toad, Xenopus laevis Daud.: Structure and function. Cell Tissue Res. 216, 113–130 (1981). https://doi.org/10.1007/BF00234548

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234548

Key words

Navigation