Skip to main content
Log in

Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the ‘openness’ of their habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Axial length

asf:

Area-sampling fraction

C:

Mean corneal diameter

CE:

Coefficient of error

NA:

Numerical aperture

PND:

Posterior nodal distance

PrV:

Principal sensory nucleus of the trigeminal nerve

RGC:

Retinal ganglion cell

SRP:

Spatial resolving power

T:

Mean transverse eye diameter

References

  • Ahnelt PK, Schubert C, Kübber-Heiss A, Schiviz A, Anger E (2006) Independent variation of retinal S and M cone photoreceptor topographies: a survey of four families of mammals. Vis Neurosci 23:429–435

    Article  PubMed  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Bellrose FC (1980) Ducks, geese and swans of North America, 3rd edn. Stackpole Books, Harrisburg

    Google Scholar 

  • Berkhoudt H (1980) The morphology and distribution of cutaneous mechanoreceptors (Herbst and Grandry corpuscles) in bill and tongue of the mallard (Anas platyrhynchos L.). Neth J Zool 50:1–34

    Google Scholar 

  • Binggeli RL, Paule WJ (1969) The pigeon retina: quantitative aspects of optic nerve and ganglion cell layer. J Comp Neurol 137:1–18

    Article  PubMed  CAS  Google Scholar 

  • Bock WJ (1994) Concepts and methods in ecomorphology. J Biosci 19:403–413

    Article  Google Scholar 

  • Boire D, Dufour JS, Theoret H, Ptito M (2001) Quantitative analysis of the retinal ganglion cell layer in the ostrich, Struthio camelus. Brain Behav Evol 58:343–355

    Article  PubMed  CAS  Google Scholar 

  • Braekevelt CR (1990) Retinal photoreceptor fine structure in the mallard duck (Anas platyrhynchos). Histol Histopath 5:123–131

    CAS  Google Scholar 

  • Budnik V, Mpodozis J, Varela FJ, Maturana HR (1984) Regional specialization of the quail retina: ganglion cell density and oil droplet distribution. Neurosci Lett 51:145–150

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Naito J (1999) A quantitative analysis of the cells in the ganglion cell layer of the chick retina. Brain Behav Evol 53:75–86

    Article  PubMed  CAS  Google Scholar 

  • Coimbra JP, Marceliano MLV, Andrade-da-Costa BLS, Yamada ES (2006) The retina of tyrant flycatchers: topographic organization of neuronal density and size in the ganglion cell layer of the great kiskadee Pitangus sulphuratus and the rusty marginated flycatcher Myiozetetes cayanensis (Aves: Tyrannidae). Brain Behav Evol 68:15–25

    Article  PubMed  Google Scholar 

  • Coimbra JP, Trévia N, Marceliano ML, da Silveira Andrade-Da-Costa BL, Picanço-Diniz CW, Yamada ES (2009) Number and distribution of neurons in the retinal ganglion cell layer in relation to foraging behaviors of tyrant flycatchers. J Comp Neurol 514:66–73

    Article  PubMed  Google Scholar 

  • Coimbra JP, Nolan PM, Collin SP, Hart NS (2012) Retinal ganglion cell topography and spatial resolving power in penguins. Brain Behav Evol 80:254–268

    Article  PubMed  Google Scholar 

  • Collin SP (1999) Behavioural ecology and retinal cell topography. In: Archer SN, Djamgoz MBS, Loew ER, Partridge JC, Vellarga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht, pp 509–535

    Chapter  Google Scholar 

  • Collin SP (2008) A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin Exp Optom 91:85–95

    Article  PubMed  Google Scholar 

  • Collin SP, Ali MA (1994) Multiple areas of acute vision in two freshwater teleosts, the creek chub, Semotilus atromaculatus (Mitchell) and the cutlips minnow, Exoglossum maxillingua (Lesueur). Can J Zool 72:721–730

    Article  Google Scholar 

  • Collin SP, Hoskins RV, Partridge JC (1998) Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization. Brain Behav Evol 51:291–314

    Article  PubMed  CAS  Google Scholar 

  • Corfield JR, Gsell AC, Brunton D, Heesy CP, Hall MI, Acosta ML, Iwaniuk AN (2011) Anatomical specializations for nocturnality in a critically endangered parrot, the kakapo (Strigops habroptilus). PLoS ONE 6:e22945

    Article  PubMed  CAS  Google Scholar 

  • Custer CM, Custer TW, Sparks DW (1996) Radio telemetry documents 24-hour feeding activity of wintering lesser scaup. Wilson Bull 108:556–566

    Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world. Ostrich to Ducks, vol 1. Lynx Edicions, Barcelona

    Google Scholar 

  • Dolan T, Fernández-Juricic E (2010) Retinal ganglion cell topography of five species of ground-foraging birds. Brain Behav Evol 75:111–121

    Article  PubMed  Google Scholar 

  • Duijm M (1958) On the position of a ribbon like central area in the eyes of some birds. Arch Neerl Zool 13:128–145

    Google Scholar 

  • Ehrlich D (1981) Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. J Comp Neurol 195:643–657

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich D, Morgan IG (1980) Kainic acid destroys displaced amacrine cells in post-hatch chicken retina. Neurosci Lett 17:43–48

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Juricic E, Moore BA, Doppler M, Freeman J, Blackwell BF, Lima SL, DeVault TL (2011) Testing the terrain hypothesis: Canada geese see their world laterally and obliquely. Brain Behav Evol 77:147–158

    Article  PubMed  Google Scholar 

  • Fite KV (1973) Anatomical and behavioral correlates of visual acuity in the great horned owl. Vision Res 13:219–230

    Article  PubMed  CAS  Google Scholar 

  • Fite KV, Rosenfield-Wessels S (1975) A comparative study of deep avian foveas. Brain Behav Evol 12:97–115

    Article  PubMed  CAS  Google Scholar 

  • Gislén A, Dacke M, Kröger RHH, Abrahamsson M, Nilsson D-E, Warrant EJ (2003) Superior underwater vision in a human population of sea gypsies. Curr Biol 13:833–836

    Article  PubMed  Google Scholar 

  • Goodman DC, Fisher H (1962) Functional morphology of the feeding apparatus in waterfowl, Aves: Anatidae. Southern Illinois University Press, Carbondale

    Google Scholar 

  • Gottschaldt KM, Lausmann S (1974) The peripheral morphological basis of tactile sensibility in the beak of geese. Cell Tissue Res 153:477–496

    Article  PubMed  CAS  Google Scholar 

  • Guillemain M, Fritz H, Guillon N, Simon G (2002a) Ecomorphology and coexistence in dabbling ducks: the role of lamellar density and body length in winter. Oikos 98:547–551

    Article  Google Scholar 

  • Guillemain M, Martin GR, Fritz H (2002b) Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Funct Ecol 16:522–529

    Article  Google Scholar 

  • Guillemain M, Fritz H, Duncan P (2002c) The importance of protected areas as nocturnal feeding grounds for dabbling ducks wintering in western France. Biol Conserv 103:183–198

    Article  Google Scholar 

  • Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary particles: the edge effect. J Microsc 111:219–223

    Article  Google Scholar 

  • Gurd DB (2007) Predicting resource partitioning and community organization of filter-feeding dabbling ducks from functional morphology. Am Nat 169:334–343

    Article  Google Scholar 

  • Gutiérrez-Ibáñez C, Iwaniuk AN, Wylie DR (2009) The independent evolution of the enlargement of the principal sensory nucleus of the trigeminal nerve in three different groups of birds. Brain Behav Evol 74:280–294

    Article  PubMed  Google Scholar 

  • Hall MI, Ross CF (2007) Eye shape and activity pattern in birds. J Zool 271:437–444

    Article  Google Scholar 

  • Hart NS (2001) Variations in cone photoreceptor abundance and the visual ecology of birds. J Comp Physiol A 187:685–697

    Article  PubMed  CAS  Google Scholar 

  • Hart NS (2002) Vision in the peafowl (Aves: Pavo cristatus). J Exp Biol 205:3925–3935

    PubMed  Google Scholar 

  • Hayes BP (1984) Cell populations of the ganglion cell layer: displaced amacrine and matching amacrine cells in the pigeon retina. Exp Brain Res 56:565–573

    Article  PubMed  CAS  Google Scholar 

  • Hayes BP, Brooke MD (1990) Retinal ganglion cell distribution and behavior in Procellariiform seabirds. Vision Res 30:1277–1289

    Article  PubMed  CAS  Google Scholar 

  • Hayes BP, Holden AL (1983) The distribution of displaced ganglion cells in the retina of the pigeon. Exp Brain Res 49:181–188

    PubMed  CAS  Google Scholar 

  • Hayes BP, Hodos W, Holden AL, Low JC (1987) The projection of the visual field upon the retina of the pigeon. Vision Res 27:31–40

    Article  PubMed  CAS  Google Scholar 

  • Hayes BP, Martin GR, Brooke M de L (1991) Novel area subserving binocular vision in the retinae of Procellariiform seabirds. Brain Behav Evol 37:79–84

    Article  PubMed  CAS  Google Scholar 

  • Heppner FH, Convissar JL, Moonan DE Jr, Anderson JGT (1965) Visual angle and formation flight in Canada geese (Branta canadensis). Auk 102:195–198

    Article  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting lifestyles: comparative optics and retinal organization. In: Cresitelli F (ed) Handbook of sensory physiology vol VIII/5. Springer, Berlin, pp 613–756

    Google Scholar 

  • Hughes A (1985) New perspectives in retinal organization. In: Osbourne NN, Chader G (eds) Progress in retinal research. Pergamon Press, New York, pp 243–313

    Google Scholar 

  • Ikushima M, Watanabe M, Ito H (1986) Distribution and morphology of retinal ganglion cells in the Japanese quail. Brain Res 376:320–334

    Article  PubMed  CAS  Google Scholar 

  • Inzunza O, Bravo H, Smith RL, Angel M (1991) Topography and morphology of retinal ganglion cells in Falconiforms: a study on predatory and carrion-eating birds. Anat Rec 229:271–277

    Article  PubMed  CAS  Google Scholar 

  • Iwaniuk AN, Heesy CP, Hall MI (2010a) Morphometrics of the eyes and orbits of the nocturnal swallow-tailed gull (Creagrus furcatus). Can J Zool 88:855–865

    Article  Google Scholar 

  • Iwaniuk AN, Gutiérrez-Ibáñez C, Pakan JMP, Wylie DR (2010b) Allometric scaling of the tectofugal pathway in birds. Brain Behav Evol 75:122–137

    Article  PubMed  Google Scholar 

  • Jane SD, Bowmaker JK (1988) Tetrachromatic colour vision in the duck (Anas platyrhynchos L.): microspectrophotometry of visual pigments and oil droplets. J Comp Physiol A 162:225–235

    Article  CAS  Google Scholar 

  • Johnsgard PA (1965) Handbook of waterfowl behavior. Cornell University Press, Ithaca

    Google Scholar 

  • Johnsgard PA (1978) Ducks, geese, and swans of the world. University of Nebraska Press, Lincoln

    Google Scholar 

  • Jorde DG, Owen RB (1988) The need for nocturnal activity and energy budgets of waterfowl. In: Weller MW (ed) Waterfowl in winter. University of Minnesota Press, Minneapolis, pp 169–180

    Google Scholar 

  • Kear J, Burton PJK (1971) The food and feeding apparatus of the blue duck Hymenolaimus. Ibis 113:483–493

    Article  Google Scholar 

  • Kehoe FP, Thomas VG (1987) A comparison of interspecific differences in the morphology of the external and internal feeding apparatus among North American Anatidae. Can J Zool 65:1818–1822

    Article  Google Scholar 

  • Kirk EC (2004) Comparative morphology of the eye in primates. Anat Rec 281A:1095–1103

    Article  Google Scholar 

  • Kirk EC (2006) Eye morphology in cathemeral lemurids and other mammals. Folia Primatol 77:27–49

    Article  PubMed  Google Scholar 

  • Krogis A (1931) On the topography of the Herbst’s and Grandry’s corpuscles in the adult and embryonic duck-bill. Acta Zool (Stockh) 12:241–263

    Article  Google Scholar 

  • Land MF (1999) The roles of head movements in the search and capture strategy of a tern (Aves, Laridae). J Comp Physiol A 184:265–272

    Article  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Leitner L-M, Roumy M (1974) Mechanosensitive units in the upper bill and in the tongue of the domestic duck. Pflügers Arch 346:141–150

    Article  PubMed  CAS  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Levy B, Sivak JG (1980) Mechanisms of accommodation in the bird eye. J Comp Physiol 137:267–272

    Article  Google Scholar 

  • Lewis TL, Esler D, Boyd WS, Zydelis R (2005) Nocturnal foraging behavior of wintering surf scoters and white-winged scoters. Condor 107:637–647

    Article  Google Scholar 

  • Lisney TJ, Collin SP (2008) Retinal ganglion cell distribution and spatial resolving power in elasmobranchs. Brain Behav Evol 72:59–77

    Article  PubMed  Google Scholar 

  • Lisney TJ, Iwaniuk AN, Bandet MV, Wylie DW (2012a) Eye shape and retinal topography in owls (Aves: Strigiformes). Brain Behav Evol 79:218–236

    Article  PubMed  Google Scholar 

  • Lisney TJ, Iwaniuk AN, Kolominsky J, Bandet MV, Corfield JR, Wylie DW (2012b) Interspecifc variation in eye shape and retinal topography in seven species of galliform bird (Aves: Galliformes: Phasianidae). J Comp Physiol A 198:717–731

    Article  Google Scholar 

  • Ma Y, Chen Y, Wang Z, Yang X, Jing H, Lin J (2004) Distribution of displaced amacrine cells in the ganglion cell layer of the Beijing duck retina. J China Agric Univ 9:52–56 [In Chinese with English abstract]

    Google Scholar 

  • Marshall J, Mellerio J, Palmer DA (1973) A schematic eye for the pigeon. Vision Res 13:2449–2453

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1986) Total panoramic vision in the mallard duck Anas platyrhynchos. Vision Res 26: 1303–1305

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1994a) Form and function in the optical structure of bird eyes. In: Davies MNO, Green PR (eds) Perception and motor control in birds. Springer, Berlin, pp 5–34

    Chapter  Google Scholar 

  • Martin GR (1994b) Visual fields in woodcocks Scolopax rusticola (Scolopacidae; Charadriiformes). J Comp Physiol A 174:787–793

    Article  Google Scholar 

  • Martin GR, Katzir G (1999) Visual fields in short-toed eagles, Circaetus gallicus (Accipitridae), and the function of binocularity in birds. Brain Behav Evol 53:55–66

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Shaw JM (2010) Bird collisions with power lines: failing to see the way ahead? Biol Conserv 143:2695–2702

    Article  Google Scholar 

  • Martin GR, Jarrett N, Williams M (2007) Visual fields in blue ducks Hymenolaimus malacorhynchis and pink-eared ducks Malacorhynchus membranaceus: visual and tactile foraging. Ibis 149:112–120

    Article  Google Scholar 

  • Mass AM, Supin AY (1995) Ganglion cell topography of the retina in the bottlenosed dolphin, Tursiops truncates. Brain Behav Evol 45:257–265

    Article  PubMed  CAS  Google Scholar 

  • Mass AM, Ketten DR, Odell DK, Supin AY (2011) Ganglion cell distribution and retinal resolution in the Florida manatee, Trichechus manatus latirostris. Anat Rec 295:177–186

    Article  Google Scholar 

  • McNeil R, Drapeau P, Goss-Custard JD (1992) The occurrence and adaptive significance of nocturnal habits in waterfowl. Biol Rev 67:381–419

    Article  Google Scholar 

  • Meyer DB (1977) The avian eye and its adaptations. In: Cresitelli F (ed) Handbook of sensory physiology, vol VIII/5. Springer, Berlin, pp 549–611

    Google Scholar 

  • Moore BA, Baumhardt P, Doppler M, Randolet J, Blackwell BF, DeVault TL, Loew ER, Fernández-Juricic E (2012) Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications. J Exp Biol 215:3442–3452

    Article  PubMed  Google Scholar 

  • Moroney MK, Pettigrew JD (1987) Some observations on the visual optics of kingfishers (Aves, Coraciformes, Alcedinidae). J Comp Physiol A 160:137–149

    Article  Google Scholar 

  • Nudds TD, Sjöberg K, Lundberg P (1994) Ecomorphological relationships among Palearctic dabbling ducks on Baltic coastal wetlands and a comparison with the Nearctic. Oikos 69:295–303

    Article  Google Scholar 

  • Pang JJ, Wu SM (2011) Morphology and immunoreactivity of retrogradely double-labeled ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci 52:4886–4896

    Article  PubMed  CAS  Google Scholar 

  • Partridge JC (1989) The visual ecology of avian cone oil droplets. J Comp Physiol A 165:415–426

    Article  Google Scholar 

  • Pettigrew JD, Dreher B, Hopkins CS, McCall MJ, Brown M (1988) Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. Brain Behav Evol 32:39–56

    Article  PubMed  CAS  Google Scholar 

  • Rahman ML, Sugita S, Aoyama M, Sugita S (2006) Number, distribution and size of retinal ganglion cells in the jungle crow (Corvus macrorhynchos). Anat Sci Int 81:253–259

    Article  PubMed  Google Scholar 

  • Rahman ML, Aoyama M, Sugita S (2007a) Topography of ganglion cells in the retina of the duck (Anas platyrhynchis var. domesticus). Anim Sci J 78:286–292

    Article  Google Scholar 

  • Rahman ML, Aoyama M, Sugita S (2007b) Regional specialization of the tree sparrow Passer montanus retina: ganglion cell density and oil droplet distribution. Ornithol Sci 6:95–105

    Article  Google Scholar 

  • Rahman ML, Aoyama M, Sugita S (2008) Ganglion cell density and oil droplet distribution in the retina of brown-eared bulbul (Hysipetes amaurotis). Anat Sci Int 83:239–246

    Article  PubMed  Google Scholar 

  • Rasband WS (1997–2012) Image J. US National Institutes of Health, Bethesda, MD, USA. http://imagej.nih.gov/ij/

  • Raveling DG (1969) Preflight and flight behavior of Canada geese. Auk 86:671–681

    Article  Google Scholar 

  • Raveling DG, Crews WE, Klimstra WD (1972) Activity patterns of Canada geese during winter. Wilson Bull 84:278–295

    Google Scholar 

  • Reymond L (1985) Spatial visual acuity of the eagle Aquila audax: a behavioural, optical and anatomical investigation. Vision Res 25:1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Reymond L (1987) Spatial visual acuity of the falcon, Falco berigora: a behavioural, optical and anatomical investigation. Vision Res 27:1859–1874

    Article  PubMed  CAS  Google Scholar 

  • Rice AN, Westneat MW (2005) Coordination of feeding, locomotor and visual systems in parrotfishes (Teleostei: Labridae). J Exp Biol 208:3503–3518

    Article  PubMed  Google Scholar 

  • Rylander MK, Bolen EG (1974) Feeding adaptations in whistling ducks (Dendrocygna). Auk 91:86–94

    Article  Google Scholar 

  • Sargeant AB, Raveling DG (1992) Mortality during the breeding season. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 396–422

    Google Scholar 

  • Scheaffer RL, Mendenhall W, Ott L (1996) Elementary survey sampling, 5th edn. PWS-Kent, Boston

    Google Scholar 

  • Schiviz AN, Ruf T, Kuebber-Heiss A, Schubert C, Ahnelt PK (2008) Retinal cone topography of artiodactyl mammals: influence of body height and habitat. J Comp Neurol 507:1336–1350

    Article  PubMed  Google Scholar 

  • Schmitz C, Hof PR (2000) Recommendations for straightforward and rigorous methods of counting neurons based on a computer simulation approach. J Chem Neuroant 20:93–114

    Article  CAS  Google Scholar 

  • Schmitz L, Wainwright PC (2011) Nocturnality constrains morphological and functional diversity in the eyes of reef fishes. BMC Evol Biol 11:338

    Article  PubMed  Google Scholar 

  • Sivak JG, Hildebrand T, Lebert C (1985) Magnitude and rate of accommodation in diving and nondiving birds. Vision Res 25:925–933

    Article  PubMed  CAS  Google Scholar 

  • Sjöberg K (1985) Foraging activity patterns in the goosander (Mergus merganser) and the red-breasted merganser (M. serrator) in relation to patterns of activity in their major prey species. Oecologia 67:35–39

    Article  Google Scholar 

  • Sjöberg K (1988) Food selection, food-seeking patterns and hunting success of captive goosanders Mergus merganser and red-breasted mergansers M. serrator in relation to the behaviour of their prey. Ibis 130:79–93

    Article  Google Scholar 

  • Slonaker JR (1897) A comparative study of the area of acute vision in vertebrates. J Morph 13:445–502

    Article  Google Scholar 

  • Stone J (1981) The wholemount handbook: a guide to the preparation and analysis of retinal wholemounts. Clarendon Press, Sydney

    Google Scholar 

  • Suburo AM, Herrero MV, Scolaro JA (1991) Regionalization of the ganglion cell layer in the retina of the Magellanic penguin (Spheniscus magellanicus). Colonial Waterbirds 14:17–24

    Article  Google Scholar 

  • Temple SE, Hart NS, Marshall J, Collin SP (2010) A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proc R Soc Lond B 277:2607–2615

    Article  Google Scholar 

  • Tome MW, Wrubleski DA (1988) Underwater foraging behavior of canvasbacks, lesser scaups, and ruddy ducks. Condor 90:168–172

    Article  Google Scholar 

  • Ullmann JFP, Moore BA, Temple SH, Fernández-Juricic E, Collin SP (2012) The retinal wholemount technique: a window to understanding the brain and behaviour. Brain Behav Evol 79:26–44

    Article  PubMed  Google Scholar 

  • van der Leeuw AHJ, Kurk K, Snelderwaard PC, Bout RG, Berkhoudt H (2003) Conflicting demands on the tropic system of Anseriformes and their evolutionary implications. Anim Biol 53:259–301

    Article  Google Scholar 

  • Veilleux CC, Lewis RJ (2011) Effects of habitat light intensity on mammalian eye shape. Anat Rec 294:905–914

    Article  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills

    Book  Google Scholar 

  • Wathey JC, Pettigrew JD (1989) Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto alba. Brain Behav Evol 33:279–292

    Article  PubMed  CAS  Google Scholar 

  • Wood CA (1917) The fundus oculi of birds, especially as viewed by the ophthalmoscope: a study in comparative anatomy and physiology. Lakeside Press, Chicago

    Book  Google Scholar 

Download references

Acknowledgments

All of our methods adhered to Canadian Council for Animal Care Guidelines and were approved by the University of Lethbridge Animal Welfare Committee. We wish to thank George Iwaniuk, Greg Sanbourn, Udo Hannebaum and the curatorial staff of the Division of Birds for providing specimens for this study. Gerald Romanchuk kindly allowed us to use his photograph of a redhead. Heather Lisney and Vincent and Angela Galipeau provided essential support during the preparation of the paper. Funding was provided by the Natural Sciences and Engineering Council of Canada (NSERC) Discovery Grants and Discovery Accelerator Supplements to ANI and DRW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Lisney.

Appendix

Appendix

See Table 5.

Table 5 List of specimens from the Division of Birds collection at the National Museum of Natural History (Washington, DC, USA) used in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisney, T.J., Stecyk, K., Kolominsky, J. et al. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes. J Comp Physiol A 199, 385–402 (2013). https://doi.org/10.1007/s00359-013-0802-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0802-1

Keywords

Navigation