Skip to main content
Log in

Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Little is known as to how visual systems and visual behaviors vary within guilds in which species share the same micro-habitat types but use different foraging tactics. We studied different dimensions of the visual system and scanning behavior of Carolina chickadees, tufted titmice, and white-breasted nuthatches, which are tree foragers that form heterospecific flocks during the winter. All species had centro-temporally located foveae that project into the frontal part of the lateral visual field. Visual acuity was the highest in nuthatches, intermediate in titmice, and the lowest in chickadees. Chickadees and titmice had relatively wide binocular fields with a high degree of eye movement right above their short bills probably to converge their eyes while searching for food. Nuthatches had narrower binocular fields with a high degree of eye movement below their bills probably to orient the fovea toward the trunk while searching for food. Chickadees and titmice had higher scanning (e.g., head movement) rates than nuthatches probably due to their wider blind areas that limit visual coverage. The visual systems of these three species seem tuned to the visual challenges posed by the different foraging and scanning strategies that facilitate the partitioning of resources within this guild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bartmess-LeVasseur J, Branch CL, Browning SA, Owens JL, Freeberg TM (2010) Predator stimuli and calling behavior of Carolina chickadees (Poecile carolinensis), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches (Sitta carolinensis). Behav Ecol Sociobiol 64:1187–1198

    Article  Google Scholar 

  • Beauchamp G (2003) Group-size effects on vigilance: a search for mechanisms. Behav Process 63:111–121

    Article  Google Scholar 

  • Blackwell BF, Fernández-Juricic E, Seamans TW, Dolan T (2009) Avian visual system configuration and behavioural response to object approach. Anim Behav 77:673–684

    Article  Google Scholar 

  • Blumstein DT, Daniel JC (2007) Quantifying behavior the JWatcher way. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Carr JM, Lima SL (2012) Heat-conserving postures hinder escape: a thermoregulation—predation trade-off in wintering birds. Behav Ecol 23:434–441

    Article  Google Scholar 

  • Changizi MA, Shimojo S (2008) ‘‘X-ray vision’’ and the evolution of forward-facing eyes. J Theor Biol 254:756–767

    Article  PubMed  Google Scholar 

  • Collin SP (1999) Behavioural ecology and retinal cell topography. In: Archer S, Djamgoz MB, Loew E, Partridge JC, Vallerga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer Academic Publishers, Dordrecht, pp 509–535

    Google Scholar 

  • Dolan T, Fernández-Juricic E (2010) Retinal ganglion cell topography of five species of ground foraging birds. Brain Behav Evol 75:111–121

    Article  PubMed  Google Scholar 

  • Dolby AS, Grubb TC Jr (1998) Benefits to satellite members in mixed species foraging groups: an experimental analysis. Anim Behav 56:501–509

    Article  PubMed  Google Scholar 

  • Dolby AS, Grubb TC Jr (2000) Social context affects risk taking by satellite species in a mixed-species foraging group. Behav Ecol 11:110–114

    Article  Google Scholar 

  • Dunlap K, Mowrer OH (1930) Head movements and eye functions of birds. J Comp Psychol 11:99–112

    Article  Google Scholar 

  • Dunning JB Jr (2008) CRC handbook of avian body masses, 2nd edn. CRC Press, Taylor and Francis Group, London

    Google Scholar 

  • Ehrlich D (1981) Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. J Comp Neurol 195:643–657

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Juricic E (2012) Sensory basis of vigilance behavior in birds: synthesis and future prospects. Behav Process 89:143–152

    Article  Google Scholar 

  • Fernández-Juricic E, Blumstein DT, Abrica G, Manriquez L, Adams LB, Adams R, Daneshrad M, Rodriguez-Prieto I (2006) Relationships of anti-predator escape and post-escape responses with body mass and morphology: a comparative avian study. Evol Ecol Res 8:731–752

    Google Scholar 

  • Fernández-Juricic E, Gall MD, Dolan T, Tisdale V, Martin GR (2008) The visual fields of two ground-foraging birds, house finches and house sparrows, allow for simultaneous foraging and anti-predator vigilance. Ibis 150:779–787

    Article  Google Scholar 

  • Fernández-Juricic E, O’Rourke C, Pitlik T (2010) Visual coverage and scanning behavior in two corvid species: American crow and Western scrub jay. J Comp Physiol A 196:879–888

    Article  Google Scholar 

  • Fernández-Juricic E, Gall MD, Dolan T, O’Rourke C, Thomas S, Lynch JR (2011a) Visual systems and vigilance behaviour of two ground-foraging avian prey species: white-crowned sparrows and California towhees. Anim Behav 81:705–713

    Article  Google Scholar 

  • Fernández-Juricic E, Moore BA, Doppler M, Freeman J, Blackwell BF, Lima SL, DeVault TL (2011b) Testing the terrain hypothesis: Canada geese see their world laterally and obliquely. Brain Behav Evol 77:147–158

    Article  PubMed  Google Scholar 

  • Fernández-Juricic E, Beauchamp G, Treminio R, Hoover M (2011c) Making heads turn: association between head movements during vigilance and perceived predation risk in brown-headed cowbird flocks. Anim Behav 82:573–577

    Article  Google Scholar 

  • Fite KV, Rosenfield-Wessels S (1975) A comparative study of deep avian foveas. Brain Behav Evol 12:97–115

    Article  PubMed  CAS  Google Scholar 

  • Freeman B, Tancred E (1978) The number and distribution of ganglion cells in the retina of the brush-tailed possum, Trichosurus vulpecula. J Comp Neurol 177:557–567

    Article  PubMed  CAS  Google Scholar 

  • Frens K (2010) Effects of food type and patch location on foraging in local birds: a field test of optimal foraging predictions. Masters thesis, University of Michigan. http://deepblue.lib.umich.edu/handle/2027.42/69156

  • Friedman MB (1975) How birds use their eyes. In: Wright P, Caryl P, Vowles DM (eds) Neural and endocrine aspects of behavior in birds. Elsevier, Amsterdam, pp 182–204

    Google Scholar 

  • Gall MD, Fernández-Juricic E (2009) Effects of physical and visual access to prey on patch selection and food search effort in a sit-and-wait predator, the Black Phoebe. Condor 111:150–158

    Article  Google Scholar 

  • Garamszegi LZ, Møller AP, Erritzøe J (2002) Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc R Soc Lond B 269:961–967

    Article  Google Scholar 

  • Gioanni H (1988) Stabilizing gaze reflexes in the pigeon (Columba livia). I. Horizontal and vertical optokinetic eye (OKN) and head (OCR) reflexes. Exp Brain Res 69:567–582

    Article  PubMed  CAS  Google Scholar 

  • Grubb TC Jr, Pravasudov VV (1994) Tufted Titmouse (Baeolophus bicolor). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. doi:10.2173/bna.86

    Google Scholar 

  • Grubb TC Jr, Pravasudov VV (2008) White-breasted Nuthatch (Sitta carolinensis). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. doi:10.2173/bna.54

    Google Scholar 

  • Guillemain M, Martin GR, Fritz H (2002) Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Func Ecol 16:522–529

    Article  Google Scholar 

  • Hart NS (2001) Variations in cone photoreceptor abundance and the visual ecology of birds. J Comp Physiol A 187:685–698

    Article  PubMed  CAS  Google Scholar 

  • Heesy CP (2004) On the relationship between orbit orientation and binocular visual field overlap in mammals. Anat Rec 281A:1104–1110

    Article  Google Scholar 

  • Heesy CP (2009) Seeing in stereo: the ecology and evolution of primate binocular vision and stereopsis. Evol Anthropol 18:21–35

    Article  Google Scholar 

  • Henry KS, Lucas JR (2008) Coevolution of auditory sensitivity and temporal resolution with acoustic signal space in three songbirds. Anim Behav 76:1659–1671

    Article  Google Scholar 

  • Howland HC, Merola S, Basarab JR (2004) The allometry and scaling of the size of vertebrate eyes. Vision Res 44:2043–2065

    Article  PubMed  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organization. In: Crescitelli F (ed) The visual system in vertebrates. Springer-Verlag, New York, pp 615–756

    Google Scholar 

  • Iwaniuk AN, Heesy CP, Hall MI, Wylie DR (2008) Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. J Comp Physiol A 194:267–282

    Article  Google Scholar 

  • Kiltie RA (2000) Scaling of visual acuity with body size in mammals and birds. Func Ecol 14:226–234

    Article  Google Scholar 

  • Lima SL (1992) Vigilance and foraging substrate: anti-predatory considerations in a non-standard environment. Behav Ecol Sociobiol 30:283–289

    Article  Google Scholar 

  • Lima SL (1993) Ecological and evolutionary perspectives on escape from predatory attack: a survey of North American birds. Wilson Bull 105:1–47

    Google Scholar 

  • Martin GR (1984) The visual fields of the tawny owl, Strix aluco L. Vision Res 24:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1993) Producing the image. In: Zeigler HP, Bischof H-J (eds) Vision, brain and behaviour in birds. MIT press, Massachusetts, pp 5–24

    Google Scholar 

  • Martin GR (1998) Eye structure and amphibious foraging in albatrosses. Proc Royal Soc B 265:665–671

    Article  Google Scholar 

  • Martin GR (2007) Visual fields and their functions in birds. J Ornithol 148:S547–S562

    Article  Google Scholar 

  • Martin GR (2009) What is binocular vision for? A birds’ eye view. J Vision 9:1–19

    Article  Google Scholar 

  • Martin GR, Coetzee HC (2004) Visual fields in hornbills: precision-grasping and sunshades. Ibis 146:18–26

    Article  Google Scholar 

  • Martin GR, Prince PA (2001) Visual fields and foraging in Procellariiform seabirds: sensory aspects of dietary segregation. Brain Behav Evol 57:33–38

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Rojas LM, Figueroa YMR, McNeil R (2004) Binocular vision and nocturnal activity in oilbirds (Steatornis caripensis) and Pauraques (Nyctidromus albicollis) Caprimulgiformes. Ornitol Neotrop 15(Suppl):233–242

    Google Scholar 

  • Martin GR, Jarrett N, Williams M (2007) Visual fields in blue ducks Hymenolaimus malacorhynchos and pink-eared ducks Malacorhynchus membranaceus: visual and tactil foraging. Ibis 149:112–120

    Article  Google Scholar 

  • McIlwain JT (1996) An introduction to the biology of vision. Cambridge University Press, New York

    Book  Google Scholar 

  • Meyer DBC (1977) The avian eye and its adaptations. In: Crescitelli F (ed) The visual system of vertebrates, handbook of sensory physiology. Springer, New York, pp 549–612

    Chapter  Google Scholar 

  • Møller AP, Erritzøe J (2010) Flight distance and eye size in birds. Ethol 116:458–465

    Article  Google Scholar 

  • Moroney MK, Pettigrew JD (1987) Some observations on the visual optics of kingfishers (Aves, Coraciformes, Alcedinidae). J Comp Physiol A 160:137–149

    Article  Google Scholar 

  • Mostrom AM, Curry RL, Lohr B (2002) Carolina chickadee (Poecile carolinensis). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. doi:10.2173/bna.636

    Google Scholar 

  • O’Rourke CT, Hall MI, Pitlik T, Fernández-Juricic E (2010a) Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement. PLoS ONE 5:e12802

    Article  PubMed  Google Scholar 

  • O’Rourke CT, Pitlik T, Hoover M, Fernández-Juricic E (2010b) Hawk eyes II: diurnal raptors differ in head movement strategies when scanning from perches. PLoS ONE 5:e12169

    Article  PubMed  Google Scholar 

  • Pettigrew JD, Dreher B, Hopkins CS, Mccall MJ, Brown M (1988) Peak density and distribution of ganglion-cells in the retinae of Microchiropteran bats—implications for visual-acuity. Brain Behav Evol 32:39–56

    Article  PubMed  CAS  Google Scholar 

  • Reymond L (1985) Spatial visual acuity of the eagle, Aquila audax: a behavioural, optical and anatomical investigation. Vision Res 25:1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Schwab IR (2012) How eyes evolved. Evolution’s witness. Oxford University Press, Oxford

    Google Scholar 

  • Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380

    Article  Google Scholar 

  • Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Evol Syst 22:115–143

    Article  Google Scholar 

  • Stone J (1981) The wholemount handbook. A guide to the preparation and analysis of retinal wholemounts. Maitland Publishing, Sydney

    Google Scholar 

  • Sullivan KA (1984a) Information exploitation by downy woodpeckers in mixed-species flocks. Behav 91:294–311

    Article  Google Scholar 

  • Sullivan KA (1984b) The advantages of social foraging in downy woodpeckers. Anim Behav 32:16–22

    Article  Google Scholar 

  • Templeton CN, Greene E (2007) Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls. Proc Natl Academy Sci USA 104:5479–5482

    Article  CAS  Google Scholar 

  • Troscianko J, von Bayern AM, Chappell J, Rutz C, Martin GR (2012) Extreme binocular vision and a straight bill facilitate tool use in New Caledonian crows. Nat Commun 3:1110

    Article  PubMed  Google Scholar 

  • Ullmann JFP, Moore BA, Temple SE, Fernández-Juricic E, Collin SP (2012) The retinal wholemount technique: a window to understanding the brain and behaviour. Brain Behav Evol 79:26–44

    Article  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Michigan

    Book  Google Scholar 

  • Wathey JC, Pettigrew JD (1989) Quantitative analysis of the retinal ganglion cell layer and optic nerve of the Barn Owl Tyto alba. Brain Behav Evol 33:279–292

    Article  PubMed  CAS  Google Scholar 

  • Williams DR, Coletta NJ (1987) Cone spacing and the visual resolution limit. J Opt Soc Am A 4:1514–1523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jeff Lucas, Megan Gall, and Kelly Ronald for comments on earlier drafts and Diana Pita for her help during the study. All handling and experimental procedures were approved by the Purdue Animal Care and Use Committee (protocol# 09-018). This project was funded by the National Science Foundation (IOS-0641550/0937187) and Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Fernández-Juricic.

Appendix

Appendix

Eye positioning in the skull of (a) Carolina chickadees, (b) tufted titmice, and (c) white-breasted nuthatches while in the visual field apparatus. Chickadees and titmice have their orbits positioned slightly more toward the bill than nuthatches.

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, B.A., Doppler, M., Young, J.E. et al. Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks. J Comp Physiol A 199, 263–277 (2013). https://doi.org/10.1007/s00359-012-0790-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0790-6

Keywords

Navigation