Skip to main content

Advertisement

Log in

Intensity invariance properties of auditory neurons compared to the statistics of relevant natural signals in grasshoppers

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The temporal pattern of amplitude modulations (AM) is often used to recognize acoustic objects. To identify objects reliably, intensity invariant representations have to be formed. We approached this problem within the auditory pathway of grasshoppers. We presented AM patterns modulated at different time scales and intensities. Metric space analysis of neuronal responses allowed us to determine how well, how invariantly, and at which time scales AM frequency is encoded. We find that in some neurons spike-count cues contribute substantially (20–60%) to the decoding of AM frequency at a single intensity. However, such cues are not robust when intensity varies. The general intensity invariance of the system is poor. However, there exists a range of AM frequencies around 83 Hz where intensity invariance of local interneurons is relatively high. In this range, natural communication signals exhibit much variation between species, suggesting an important behavioral role for this frequency band. We hypothesize, just as has been proposed for human speech, that the communication signals might have evolved to match the processing properties of the receivers. This contrasts with optimal coding theory, which postulates that neuronal systems are adapted to the statistics of the relevant signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275(5297):221–224

    Article  Google Scholar 

  • Arnqvist G (2006) Sensory exploitation and sexual conflict. Philos Trans R Soc Lond B Biol Sci 361(1466):375–386

    Article  PubMed  Google Scholar 

  • Atick J (1992) Could information theory provide an ecological theory of sensory processing? Network 3(2):213–251

    Article  Google Scholar 

  • Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61(3):183–193

    Article  CAS  PubMed  Google Scholar 

  • Barlow HB (1961) Possible principles underlying the transformations of sensory messages. In: Rosenblith WA (ed) Sensory communication. The MIT Press, Cambridge, pp 217–234

    Google Scholar 

  • Barlow HB (2001) Redundancy reduction revisited. Network 12(3):241–253

    CAS  PubMed  Google Scholar 

  • Bauer M, von Helversen O (1987) Separate localization of sound recognizing and sound producing neural mechanisms in a grasshopper. J Comp Physiol A 161(1):95–101

    Article  Google Scholar 

  • Benda J, Hennig RM (2008) Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci 24(2):113–136

    Article  PubMed  Google Scholar 

  • Benda J, Herz AV (2003) A universal model for spike-frequency adaptation. Neural Comput 15(11):2523–2564

    Article  PubMed  Google Scholar 

  • Billimoria CP, Kraus BJ, Narayan R, Maddox RK, Sen K (2008) Invariance and sensitivity to intensity in neural discrimination of natural sounds. J Neurosci 28(25):6304–6308

    Article  CAS  PubMed  Google Scholar 

  • Bridle JR, de La Bella JL, Butlin RK, Gosálvez J (2002) Low levels of chromosomal differentiation between the grasshoppers Chorthippus brunneus and Chorthippus jacobsi (orthoptera; acrididae) in northern Spain. Genetica 114(2):121–127

    Article  PubMed  Google Scholar 

  • Bugrov A, Novikova O, Mayorov V, Adkison L, Blinov A (2006) Molecular phylogeny of palaearctic genera of gomphocerinae grasshoppers (Orthoptera, Acrididae). Syst Entomol 31(2):362–368

    Article  Google Scholar 

  • Chander D, Chichilnisky EJ (2001) Adaptation to temporal contrast in primate and salamander retina. J Neurosci 21(24):9904–9916

    CAS  PubMed  Google Scholar 

  • Creutzig F, Wohlgemuth S, Stumpner A, Benda J, Ronacher B, Herz AVM (2009) Timescale-invariant representation of acoustic communication signals by a bursting neuron. J Neurosci 29(8):2575–2580

    Article  CAS  PubMed  Google Scholar 

  • Flook PK, Rowell CHF (1997) The phylogeny of the Caelifera (Insecta, Orthoptera) as deduced from mtrRNA gene sequences. Mol Phylogenet Evol 8(1):89–103

    Article  CAS  PubMed  Google Scholar 

  • Franz A, Ronacher B (2002) Temperature dependence of temporal resolution in an insect nervous system. J Comp Physiol A 188(4):261–271

    Article  CAS  Google Scholar 

  • Gerhardt CH, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago Press, London

    Google Scholar 

  • Guilford T, Dawkins MS (1993) Receiver psychology and the design of animal signals. Trends Neurosci 16(11):430–436

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt JK, Benda J, Hennig RM (2009) The origin of adaptation in the auditory pathway of locusts is specific to cell type and function. J Neurosci 29(8):2626–2636

    Article  CAS  PubMed  Google Scholar 

  • Hoy RR, Hoikkala A, Kaneshiro K (1988) Hawaiian courtship songs: evolutionary innovation in communication signals of Drosophila. Science 240(4849):217–219

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84(2):541–577

    Article  CAS  PubMed  Google Scholar 

  • Koch C (1998) Biophysics of computation: information processing in single neurons (computational neuroscience). Oxford University Press, New York

    Google Scholar 

  • Kriegbaum H (1989) Female choice in the grasshopper Chorthippus biguttulus. Naturwissenschaften 76(2):81–82

    Article  Google Scholar 

  • Laughlin SB, Sejnowski TJ (2003) Communication in neuronal networks. Science 301(5641):1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lawley DN, Maxwell AE (1971) Factor analysis as a statistical method, 2nd edn. Elsevier, New York

    Google Scholar 

  • Lewicki MS (2002) Efficient coding of natural sounds. Nat Neurosci 5(4):356–363

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4(11):1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV (2001) Representation of acoustic communication signals by insect auditory receptor neurons. J Neurosci 21(9):3215–3227

    CAS  PubMed  Google Scholar 

  • Machens CK, Schütze H, Franz A, Kolesnikova O, Stemmler MB, Ronacher B, Herz AV (2003) Single auditory neurons rapidly discriminate conspecific communication signals. Nat Neurosci 6(4):341–342

    Article  CAS  PubMed  Google Scholar 

  • Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. J Neurosci 24(5):1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Machens CK, Gollisch T, Kolesnikova O, Herz AV (2005) Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron 47(3):447–456

    Article  CAS  PubMed  Google Scholar 

  • Martinez WL (2004) Exploratory data analysis with MATLAB (computer science and data analysis). Chapman and Hall/CRC, London

    Google Scholar 

  • Mendelson TC, Shaw KL (2005) Sexual behaviour: rapid speciation in an arthropod. Nature 433(7024):375–376

    Article  CAS  PubMed  Google Scholar 

  • Narayan R, Grana G, Sen K (2006) Distinct time scales in cortical discrimination of natural sounds in songbirds. J Neurophysiol 96(1):252–258

    Article  PubMed  Google Scholar 

  • Neuhofer D, Wohlgemuth S, Stumpner A, Ronacher B (2008) Evolutionarily conserved coding properties of auditory neurons across grasshopper species. Proc R Soc Lond B 208:1965–1974

    Article  Google Scholar 

  • Price T (1998) Sexual selection and natural selection in bird speciation. Philos Trans R Soc Lond B Biol Sci 353(1366):251–260

    Article  Google Scholar 

  • Rieke F, Warland D, van Steveninck R, Bialek W (1999) Spikes: exploring the neural code (computational neuroscience). The MIT Press, Cambridge

    Google Scholar 

  • Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol A 161(1):33–42

    Article  Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155(2):249–262

    Article  Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of orthoptera. J Comp Neurol 275(2):201–215

    Article  PubMed  Google Scholar 

  • Ronacher B, Stumpner A (1988) Filtering of behaviourally relevant temporal parameters of a grasshopper’s song by an auditory interneuron. J Comp Physiol A 163(4):517–523

    Article  Google Scholar 

  • Ryan MJ, Phelps SM, Rand AS (2001) How evolutionary history shapes recognition mechanisms. Trends Cogn Sci 5(4):143–148

    Article  PubMed  Google Scholar 

  • Sadagopan S, Wang X (2008) Level invariant representation of sounds by populations of neurons in primary auditory cortex. J Neurosci 28(13):3415–3426

    Article  CAS  PubMed  Google Scholar 

  • Safi K, Heinzle J, Reinhold K (2006) Species recognition influences female mate preferences in the common european grasshopper (Chorthippus biguttulus Linnaeus, 1758. Ethology 112(12):1225–1230

    Article  Google Scholar 

  • Schmidt A, Ronacher B, Hennig R (2008) The role of frequency, phase and time for processing of amplitude modulated signals by grasshoppers. J Comp Physiol A 194(3):221–233

    Article  CAS  Google Scholar 

  • Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216

    Article  CAS  PubMed  Google Scholar 

  • Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439(7079):978–982

    Article  CAS  PubMed  Google Scholar 

  • Stumpner A, Ronacher B (1991) Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus: I. Morphological and physiological characterization. J Exp Biol 158(1):391–410

    Google Scholar 

  • Stumpner A, Ronacher B (1994) Neurophysiological aspects of song pattern recognition and sound localization in grasshoppers. Am Zool 34(6):696–705

    Google Scholar 

  • Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88(4):159–170

    Article  CAS  PubMed  Google Scholar 

  • Stumpner A, Ronacher B, von Helversen O (1991) Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus: II. Processing of temporal patterns of the song of the male. J Exp Biol 158(1):411–430

    Google Scholar 

  • Theunissen F, Miller JP (1995) Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci 2(2):149–162

    Article  CAS  PubMed  Google Scholar 

  • Uchida N, Mainen ZF (2007) Odor concentration invariance by chemical ratio coding. Front Syst Neurosci 1:3

    Google Scholar 

  • van Alphen JJM, Seehausen O, Galis F (2004) Speciation and radiation in African haplochromine cichlids. In: Diekmann U, Doebeli M, Metz JAJ, Tautz D (eds) Adaptive speciation (Cambridge studies in adaptive dynamics). Cambridge University Press, Cambridge, pp 54–75

    Google Scholar 

  • van Rossum MC (2001) A novel spike distance. Neural Comput 13(4):751–763

    Article  PubMed  Google Scholar 

  • Vogel A, Ronacher B (2007) Neural correlations increase between consecutive processing levels in the auditory system of locusts. J Neurophysiol 97(5):3376–3385

    Article  CAS  PubMed  Google Scholar 

  • Vogel A, Hennig RM, Ronacher B (2005) Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. J Neurophysiol 93(6):3548–3559

    Article  CAS  PubMed  Google Scholar 

  • von Helversen D (1972) Gesang des Männchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 81(4):381–422

    Article  Google Scholar 

  • von Helversen D, von Helversen O (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 180(4):373–386

    Article  Google Scholar 

  • von Helversen D, von Helversen O (1998) Acoustic pattern recognition in a grasshopper: processing in the time or frequency domain? Biol Cybern 79(6):467–476

    Article  Google Scholar 

  • Wehner R (1987) ‘Matched filters’—neural models of the external world. J Comp Physiol A 161(4):511–531

    Article  Google Scholar 

  • Weschke G, Ronacher B (2008) Influence of sound pressure level on the processing of amplitude modulations by auditory neurons of the locust. J Comp Physiol A 194(3):255–265

    Article  Google Scholar 

  • Wohlgemuth S, Ronacher B (2007) Auditory discrimination of amplitude modulations based on metric distances of spike trains. J Neurophysiol 97(4):3082–3092

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Matthias Hennig as well as the anonymous reviewers for helpful comments on previous versions of the manuscript and M. Bauer and O. von Helversen for providing the grasshopper song recordings. The study was supported by grants from the Bundesministerium für Bildung und Forschung (Bernstein Center for Computational Neuroscience) and the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 618) to B.R. The experiments comply with the current laws on “Principles of animal care” in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Clemens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemens, J., Weschke, G., Vogel, A. et al. Intensity invariance properties of auditory neurons compared to the statistics of relevant natural signals in grasshoppers. J Comp Physiol A 196, 285–297 (2010). https://doi.org/10.1007/s00359-010-0515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0515-7

Keywords

Navigation