Skip to main content

Information Processing in the Auditory Pathway of Insects

  • Chapter
  • First Online:
Insect Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 55))

Abstract

The acoustic communication of grasshoppers, crickets, and katydids provides prime examples of general principles of how nervous systems represent sensory information. The processing of auditory signals in insects is innate; thus the involved neuronal modules are “hardwired.” In addition, the relevant stimulus space is restricted, facilitating the investigation. A major problem of sensory processing is the trial-to-trial variability of spike trains caused by the stochastic opening and closing of ion channels. In animals that can spend only a few neurons for a given task, this unreliability of spike trains is a relevant constraint for neuronal encoding.

Signal recognition in insects depends primarily on features of the sound envelope, the pattern of amplitude modulations. The receptor neurons respond with high temporal precision and reflect the stimulus’s envelope in their spike patterns. This kind of “temporal code” is later transformed to a “labeled line code” representation in which single neurons encode specific sound features. Similarly to the larger nervous systems of vertebrates, at this stage, spike rates are reduced and the presence of particular sound features can be read out from a population code. Remarkably, in insects, the sparsening and change of coding schemes occur already within a few synapses after the receptors.

Modeling studies suggest how feature detectors equipped with linear filters may explain behavioral scores found with specific stimulus variations. Remarkably, in grasshoppers and crickets, the filters found by this approach resembled Gabor filters, which allow an easy transition between behavioral preference functions found in different species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell, A. J., & Sejnowski, T. J. (1997). The ‘independent components’ of natural scenes are edge filters. Vision Research, 37, 3327–3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennet-Clark, H. C. (1999). Resonators in insect sound production: How insects produce loud pure-tone songs. The Journal of Experimental Biology, 202, 3347–3357.

    CAS  PubMed  Google Scholar 

  • Boyan, G. S. (1992). Common synaptic drive to segmentally homologous interneurons in the locust. Journal of Comparative Neurology, 321, 544–554.

    Article  CAS  PubMed  Google Scholar 

  • Boyan, G. S., & Miller, L. A. (1991). Parallel processing of afferent input by identified interneurons in the auditory pathway of the noctuid moth Noctua pronuba (L). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 168, 727–738.

    Article  CAS  Google Scholar 

  • Clemens, J., & Hennig, R. M. (2013). Computational principles underlying the recognition of acoustic signals in insects. Journal of Computational Neuroscience, 35, 75–85.

    Article  PubMed  Google Scholar 

  • Clemens, J., & Ronacher, B. (2013). Feature extraction and integration underlying perceptual decision making during courtship in grasshoppers. The Journal of Neuroscience, 33, 12136–12145.

    Article  CAS  PubMed  Google Scholar 

  • Clemens, J., Kutzki, O., Ronacher, B., Schreiber, S., & Wohlgemuth, S. (2011). Efficient transformation of an auditory population code in a small sensory system. Proceedings of the National Academy of Sciences of the USA, 108, 13812–13817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creutzig, F., Wohlgemuth, S., Stumpner, A., Benda, J., Ronacher, B., & Herz, A. V. M. (2009). Timescale-invariant representation of acoustic communication signals by a bursting neuron. The Journal of Neuroscience, 29, 2575–2580.

    Article  CAS  PubMed  Google Scholar 

  • Creutzig, F., Benda, J., Wohlgemuth, S., Stumpner, A., Ronacher, B., & Herz, A. V. M. (2010). Timescale-invariant pattern recognition by feed-forward inhibition and parallel signal processing. Neural Computation, 22, 1493–1510.

    Article  PubMed  Google Scholar 

  • Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2, 1160–1169.

    Article  CAS  Google Scholar 

  • Deily, J. A., & Schul, J. (2006). Spectral selectivity during phonotaxis: A comparative study in Neoconocephalus (Orthoptera: Tettigoniidae): Call recognition at two temporal scales. The Journal of Experimental Biology, 209, 1757–1764.

    Article  PubMed  Google Scholar 

  • Einhäupl, A., Stange, N., Hennig, R. M., & Ronacher, B. (2011). Attractiveness of grasshopper songs correlates with their robustness against noise. Behavioral Ecology, 22(4), 791–799.

    Article  Google Scholar 

  • Fonseca, P. J. (2014). Cicada acoustic communication. In B. Hedwig (Ed.), Insect hearing and acoustic communication (pp. 101–121). Berlin and Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and anurans. Chicago: University of Chicago Press.

    Google Scholar 

  • Gottsberger, B., & Mayer, F. (2007). Behavioral sterility of hybrid males in acoustically communicating grasshoppers. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193, 703–714.

    Article  PubMed  Google Scholar 

  • Greenfield, M. D. (2015). Signal interactions and interference in insect choruses: Singing and listening in the social environment. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201, 143–154.

    Article  PubMed  Google Scholar 

  • Hartbauer, M., Kratzer, S., Steiner, K., & Römer, H. (2005). Mechanisms for synchrony and alternation in song interactions of the bushcricket Mecopoda elongata (Tettigoniidae, Orthoptera). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191, 175–188.

    Article  PubMed  Google Scholar 

  • Hartbauer, M., Radspieler, G., & Römer, H. (2010). Reliable detection of predator cues in afferent spike trains of a katydid under high background noise levels. Journal of Experimental Biology, 213, 3036–3046.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedwig, B., & Robert, D. (2014). Auditory parasitoid flies exploiting acoustic communication of insects. In B. Hedwig (Ed.), Insect hearing and acoustic communication (pp. 45–63). Berlin and Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Heller, K.-G. (1988). Bioakustik der europäischen Laubheuschrecken. Weikersheim: Josef Margraf Verlag.

    Google Scholar 

  • Hennig, R. M. (2003). Acoustic feature extraction by cross-correlation in crickets? Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189, 589–598.

    Article  CAS  PubMed  Google Scholar 

  • Hennig, R. M. (2009). Walking in Fourier’s space: Algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195, 971–987.

    Article  PubMed  Google Scholar 

  • Hennig, R. M., Franz, A., & Stumpner, A. (2004). Processing of auditory information in insects. Microscopy Research and Technique, 63, 351–374.

    Article  CAS  PubMed  Google Scholar 

  • Hennig, R. M., Heller, K.-G., & Clemens, J. (2014). Time and timing in the acoustic recognition system of crickets. Frontiers in Physiology, 5, 286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoy, R. R. (1989). Startle, categorical response, and attention in acoustic behavior of insects. Annual Review in Neuroscience, 12, 355–375.

    Article  CAS  Google Scholar 

  • Hummel, J., Kössl, M., & Nowotny, M. (2011). Sound-induced tympanal membrane motion in bushcrickets and its relationship to sensory output. Journal of Experimental Biology, 214, 3596–3604.

    Article  PubMed  Google Scholar 

  • Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Review, 84, 541–577.

    Article  CAS  Google Scholar 

  • Kostarakos, K., & Hedwig, B. (2012). Calling song recognition in female crickets: Temporal tuning of identified brain neurons matches behaviour. The Journal of Neuroscience, 32(28), 9601–9612.

    Article  CAS  PubMed  Google Scholar 

  • Kostarakos, K., & Hedwig, B. (2015). Pattern recognition in field crickets: Concepts and neural evidence. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201, 73–85.

    Article  PubMed  Google Scholar 

  • Kostarakos, K., Hennig, R. M., & Römer, H. (2009). Two matched filters and the evolution of mating signals in four species of cricket. Frontiers in Zoology, 6, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krahe, R., Budinger, E., & Ronacher, B. (2002). Coding of a sexually dimorphic song feature by auditory interneurons of grasshoppers: The role of leading inhibition. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 187, 977–985.

    Article  PubMed  Google Scholar 

  • Lakes-Harlan, R., & Lehmann, G. U. C. (2015). Parasitoid flies exploiting acoustic communication of insects—comparative aspects of independent functional adaptations. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201, 123–132.

    Article  PubMed  Google Scholar 

  • Machens, C. K., Stemmler, M. B., Prinz, P., Krahe, R., Ronacher, B., & Herz, A. V. M. (2001). Representation of acoustic communication signals by insect auditory receptor neurons. The Journal of Neuroscience, 21, 3215–3227.

    CAS  PubMed  Google Scholar 

  • Machens, C. K., Schütze, H., Franz, A., Stemmler, M. B., Ronacher, B., & Herz, A. V. M. (2003). Auditory receptor neurons preserve characteristic differences between conspecific communication signals. Nature Neuroscience, 6, 341–342.

    Article  CAS  PubMed  Google Scholar 

  • Marsat, G., & Pollack, G. S. (2004). Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. Journal of Neurophysiology, 92, 939–948.

    Article  CAS  PubMed  Google Scholar 

  • Marsat, G., & Pollack, G. S. (2006). A behavioural role for feature detection by sensory bursts. The Journal of Neuroscience, 26, 10542–10547.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, D. C., & Hill, K. B. R. (2009). Versatile aggressive mimicry of cicadas by an Australian predatory katydid. PLoS ONE, 4, e4185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer, J., & Elsner, N. (1996). How well are frequency sensitivities of grasshopper ears tuned to species-specific song spectra? Journal of Experimental Biology, 199, 1631–1642.

    PubMed  Google Scholar 

  • Michelsen, A. (Ed.). (1985). Time resolution in auditory systems. Berlin and Heidelberg: Springer Verlag.

    Google Scholar 

  • Michelsen, A., Popov, A. V., & Lewis, B. (1994). Physics of directional hearing in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 175, 153–164.

    Article  Google Scholar 

  • Montealegre-Z, F., Jonsson, T., Robson-Brown, K. A., Postles, M., & Robert, D. (2012). Convergent evolution between insect and mammalian audition. Science, 338(6109), 968–971.

    Article  CAS  PubMed  Google Scholar 

  • Neuhofer, D., Stemmler, M., & Ronacher, B. (2011). Neuronal precision and the limits for acoustic signal recognition in a small neuronal network. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 251–265.

    Article  PubMed  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski, T. D., & Stumpner, A. (2010). Frequency processing at consecutive levels in the auditory system of bush crickets (Tettigoniidae). Journal of Comparative Neurology, 518, 3101–3116.

    Article  PubMed  Google Scholar 

  • Pollack, G. S. (1988). Selective attention in an insect auditory neuron. The Journal of Neuroscience, 8, 2635–2639.

    CAS  PubMed  Google Scholar 

  • Pollack, G. S., & Hoy, R. R. (1979). Temporal pattern as a cue for species-specific calling song recognition in crickets. Science, 204, 429–432.

    Article  CAS  PubMed  Google Scholar 

  • Prinz, P., & Ronacher, B. (2002). Temporal modulation transfer functions in auditory receptor fibres of the locust (Locusta migratoria L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 188, 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes: Exploring the neural code. Cambridge, MA: MIT Press.

    Google Scholar 

  • Römer, H., & Krusch, M. (2000). A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera, Tettigoniidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 186, 181–191.

    Article  Google Scholar 

  • Römer, H., & Lewald, J. (1992). High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behavioral Ecology and Sociobiology, 29, 437–444.

    Article  Google Scholar 

  • Ronacher, B. (2014). Processing of species-specific signals in the auditory pathway of grasshoppers. In B. Hedwig (Ed.), Insect hearing and acoustic communication (pp. 185–204). Berlin and Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Ronacher, B., & Stumpner, A. (1988). Filtering of behaviourally relevant temporal parameters of a grasshopper´s song by an auditory interneuron. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 163, 517–523.

    Article  Google Scholar 

  • Ronacher, B., & Stange, N. (2013). Processing of acoustic signals in grasshoppers—a neuroethological approach towards female choice. Journal of Physiology Paris, 107, 41–50.

    Article  Google Scholar 

  • Ronacher, B., Wohlgemuth, S., Vogel, A., & Krahe, R. (2008). Discrimination of acoustic communication signals by grasshoppers: Temporal resolution, temporal integration, and the impact of intrinsic noise. Journal of Comparative Psychology, 22, 252–263.

    Article  Google Scholar 

  • Ronacher, B., Hennig, R. M., & Clemens, J. (2015). Computational principles underlying recognition of acoustic signals in grasshoppers and crickets. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201, 61–71.

    Article  PubMed  Google Scholar 

  • Sabourin, P., & Pollack, G. S. (2010). Temporal coding by populations of auditory receptor neurons. Journal of Neurophysiology, 103, 1614–1621.

    Article  PubMed  Google Scholar 

  • Schildberger, K. (1984). Temporal selectivity of identified auditory neurons in the cricket brain. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 155, 171–185.

    Article  Google Scholar 

  • Schildberger, K., & Hörner, M. (1988). The function of auditory neurons in cricket phonotaxis. I. Influence of hyperpolarization of identified neurons on sound localization. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 163, 621–631.

    Article  Google Scholar 

  • Schmidt, A. K. D., & Römer, H. (2011). Solutions to the cocktail party problem in insects: Selective filters, spatial release from masking and gain control in tropical crickets. PLoS ONE, 6, e28593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, A., Ronacher, B., & Hennig, R. M. (2008). The role of frequency, phase and time for processing amplitude modulated signals by grasshoppers. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 194, 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, A. K. D., Riede, K., & Römer, H. (2011). High background noise shapes selective auditory filters in a tropical cricket. Journal of Experimental Biology, 214, 1754–1762.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schul, J. (1997). Neuronal basis of phonotactic behaviour in Tettigonia viridissima: Processing of behaviourally relevant signals by auditory afferents and thoracic interneurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 180, 573–583.

    Article  Google Scholar 

  • Schul, J. (1998). Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 183, 401–410.

    Article  Google Scholar 

  • Schul, J., Bush, S., & Frederick, K. H. (2014). Evolution of call patterns and pattern recognition mechanisms in Neoconocephalus katydids. In B. Hedwig (Ed.), Insect hearing and acoustic communication (pp. 167–184). Berlin and Heidelberg: Springer.

    Chapter  Google Scholar 

  • Siegert, M. E., Römer, H., Hashim, R., & Hartbauer, M. (2011). Neuronal correlates of a preference for leading signals in the synchronizing bushcricket Mecopoda elongata (Orthoptera: Tettigoniidae). Journal of Experimental Biology, 214, 3924–3934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpner, A. (1996). Tonotopic organization of the hearing organ in a bushcricket. Naturwissenschaften, 83, 81–84.

    CAS  Google Scholar 

  • Stumpner, A. (1998). Picrotoxin eliminates frequency selectivity of an auditory interneuron in a bushcricket. Journal of Neurophysiology, 79, 2408–2415.

    CAS  PubMed  Google Scholar 

  • Stumpner, A., & Ronacher, B. (1991). Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus: I. Morphological and physiological characterization. Journal of Experimental Biology, 158, 391–410.

    Google Scholar 

  • Stumpner, A., & von Helversen, D. (2001). Evolution and function of auditory systems in insects. Naturwissenschaften, 88, 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Stumpner, A., & Molina, J. (2006). Diversity of intersegmental auditory neurons in a bush cricket. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 192, 1359–1376.

    Article  PubMed  Google Scholar 

  • Stumpner, A., & Nowotny, M. (2014). Neural processing in the bush-cricket auditory pathway. In B. Hedwig (Ed.), Insect hearing and acoustic communication (pp. 143–166). Berlin and Heidelberg: Springer.

    Chapter  Google Scholar 

  • Surlykke, A., Larsen, O. N., & Michelsen, A. (1988). Temporal coding in the auditory receptor of the moth ear. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 162, 367–374.

    Article  Google Scholar 

  • Triblehorn, J. D., & Schul, J. (2009). Sensory-encoding differences contribute to species-specific call recognition mechanisms. Journal of Neurophysiology, 102, 1348–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viemeister, N. F., & Plack, C. J. (1993). Time analysis. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Human psychophysics (pp. 116–154). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Vogel, A., & Ronacher, B. (2007). Neural correlations increase between consecutive processing levels in the auditory system of locusts. Journal of Neurophysiology, 97, 3376–3385.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, A., Hennig, R. M., & Ronacher, B. (2005). Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. Journal of Neurophysiology, 93, 3548–3559.

    Article  CAS  PubMed  Google Scholar 

  • von Helversen, D., & von Helversen, O. (1975). Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae). II. Das Lautschema von Artbastarden zwischen Chorthippus biguttulus und C. mollis. Journal of Comparative Physiology, 104, 301–323.

    Article  Google Scholar 

  • von Helversen, D., & von Helversen, O. (1997). Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 180, 373–386.

    Article  Google Scholar 

  • von Helversen, D., & von Helversen, O. (1998). Acoustic pattern recognition in a grasshopper: Processing in the frequency or time domain? Biological Cybernetics, 79, 467–476.

    Article  Google Scholar 

  • von Helversen, O., & von Helversen, D. (1994). Forces driving coevolution of song and song recognition in grasshoppers. In K. Schildberger & N. Elsner (Eds.), Neural basis of behavioural adaptations (pp. 253–284). Stuttgart: G. Fischer.

    Google Scholar 

  • Wendler, G. (1990). Pattern recognition and localization in cricket phonotaxis. In F. G. Gribakin, K. Wiese, & A. V. Popov (Eds.), Sensory systems and communication in arthropods (pp. 387–394). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Wohlers, D., & Huber, F. (1982). Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. Journal of Comparative Physiology A, 146, 161–173.

    Article  Google Scholar 

  • Wohlgemuth, S., & Ronacher, B. (2007). Auditory discrimination of amplitude modulations based on metric distances of spike trains. Journal of Neurophysiology, 97, 3082–3092.

    Article  PubMed  Google Scholar 

  • Wohlgemuth, S., Vogel, A., & Ronacher, B. (2011). Encoding of amplitude modulations by auditory neurons of the locust: Influence of modulation frequency, rise time, and modulation depth. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 61–74.

    Article  PubMed  Google Scholar 

  • Wyttenbach, R. A., May, M. L., & Hoy, R. R. (1996). Categorical perception of sound frequency by crickets. Science, 273, 1542–1544.

    Article  CAS  PubMed  Google Scholar 

  • Yost, W. A. (2000). Fundamentals of hearing—an introduction. San Diego: Academic Press.

    Google Scholar 

Download references

Acknowledgments

I thank Sarah Wirtssohn for help with the figures and Matthias Hennig and Andreas Stumpner for many discussions and their helpful comments on an earlier version of the manuscript. Funding by the Deutsche Forschungsgemeinschaft (DFG), Grants SFB 618 and RO 547/12-1, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Ronacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ronacher, B. (2016). Information Processing in the Auditory Pathway of Insects. In: Pollack, G., Mason, A., Popper, A., Fay, R. (eds) Insect Hearing. Springer Handbook of Auditory Research, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-28890-1_9

Download citation

Publish with us

Policies and ethics