Skip to main content
Log in

Direct and decarboxylation-dependent effects of neurotransmitter precursors on firing of isolated monoaminergic neurons

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

To elucidate mechanisms that underlie the profound physiological effects of the monoamine precursors 5-hydroxy-l-tryptophan (5-HTP) and l-3,4-dihydroxyphenylalanine (l-DOPA), we examined their action on single monoaminergic neurons isolated from the ganglia of the gastropod snail Lymnaea stagnalis. In isolated serotonergic PeA motoneurons, 5-HTP produced excitation. The effect was mimicked by serotonin at 0.5–1 μM, masked by pretreatment with serotonin at higher concentrations, and abolished by the inhibitor of aromatic amino acid decarboxylase (AAAD) m-hydroxybenzylhydrazine (NSD-1015), the inhibitor of the vesicular monoamine transporter reserpine or the serotonin receptor antagonist mianserin. Exposure of the dopaminergic interneurons RPeD1 to l-DOPA caused a biphasic effect composed of a depolarization followed by a hyperpolarization. AAAD inactivation with NSD-1015, as well as the blockade of dopamine receptors with sulpiride, resulted in the enhancement of the excitatory effect, and the abolition of the inhibitory effect. Dopamine caused hyperpolarization and masked the inhibitory phase of l-DOPA action. The results show that precursors affect the rate of firing of isolated monoaminergic neurons and that their effect is completely or partially mediated by the enhanced synthesis of the respective neurotransmitter, followed by extrasynaptic release of the latter and activation of extrasynaptic autoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

5-HTP:

5-hydroxy-l-tryptophan

l-DOPA:

l-3,4-dihydroxyphenylalanine

AAAD:

Aromatic amino acid decarboxylase

NSD-1015:

m-hydroxybenzylhydrazine

References

  • Balan IS, Ugrumov MV, Calas A, Mailly P, Krieger M, Thibault J (2000) Tyrosine hydroxylase-expressing and/or aromatic l-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism. J Comp Neurol 425:167–176

    Article  PubMed  CAS  Google Scholar 

  • Benjamin PR (1984) Interneuronal network acting on snail neurosecretory neurons (yellow cells and yellow green cells of lymnaea). J Exp Biol 113:165–185

    Google Scholar 

  • Birdsall TC (1998) 5-hydroxytryptophan: a clinically-effective serotonin precursor. Altern Med Rev 3:271–280

    PubMed  CAS  Google Scholar 

  • Bouron A (2001) Modulation of spontaneous quantal release of neurotransmitters in the hippocampus. Prog Neurobiol 63:613–635

    Article  PubMed  CAS  Google Scholar 

  • Breier JM, Bankson MG, Yamamoto BK (2006) l-tyrosine contributes to (+)-3, 4-methylenedioxymethamphetamine-induced serotonin depletions. J Neurosci 26:290–299

    Article  PubMed  CAS  Google Scholar 

  • Bruns D, Jahn R (1995) Real-time measurements of transmitter release from single synaptic vesicles. Nature 377:62–65

    Article  PubMed  CAS  Google Scholar 

  • Byerley WF, Judd LL, Reimherr FW, Grosser BI (1987) 5-hydroxytryptophan: a review of its antidepressant efficacy and adverse effects. J Clin Psychopharmacol 7:127–137

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Gavin PF, Luo G, Ewing AG (1995) Observation and quantitation of exocytosis from the cell body of a fully developed neuron in Planorbis corneus. J Neurosci 15:7747–7755

    PubMed  CAS  Google Scholar 

  • Chen XW, Mu Y, Huang HP, Guo N, Zhang B, Fan SY, Xiong JX, Wang SR, Xiong W, Huang W, Liu T, Zheng LH, Zhang CX, Li LH, Yu ZP, Hu ZA, Zhou Z (2008) Hypocretin-1 potentiates NMDA receptor-mediated somatodendritic secretion from locus ceruleus neurons. J Neurosci 28:3202–3208

    Article  PubMed  CAS  Google Scholar 

  • Chistopolsky IA, Sakharov DA (2003) Non-synaptic integration of neuron somata in the snail CNS. Neurosci Behav Physiol 33:295–300

    Article  Google Scholar 

  • Colliver TL, Pyott SJ, Achalabun M, Ewing AG (2000) VMAT-mediated changes in quantal size and vesicular volume. J Neurosci 20:5276–5282

    PubMed  CAS  Google Scholar 

  • Cottrell GA, Powell B (1971) Formation of serotonin by isolated serotonin-containing neurons and by isolated non-amine-containing neurons. J Neurochem 18:1695–1697

    Article  PubMed  CAS  Google Scholar 

  • De-Miguel FF, Trueta C (2005) Synaptic and extrasynaptic secretion of serotonin. Cell Mol Neurobiol 25:297–312

    Article  PubMed  CAS  Google Scholar 

  • Dyakonova TL (1991) Neurochemical mechanisms of the burst activity regulation in isolated endogenous oscillators of snail: role of monoamines and opioid peptides. Neirofisiologia (Kiev) 23:472–480

    CAS  Google Scholar 

  • Dyakonova TL (2002) Interaction between serotonin and nitric oxide in the activation of the serotoninergic system in the common snail. Neurosci Behav Physiol 32:275–282

    Article  CAS  Google Scholar 

  • Ershov PV, Ugrumov MV, Calas A, Krieger M, Thibault J (2002) Differentiation of tyrosine hydroxylase-synthesizing and/or aromatic l-amino acid decarboxylase-synthesizing neurons in the rat mediobasal hypothalamus: quantitative double-immunofluorescence study. J Comp Neurol 446:114–122

    Article  PubMed  CAS  Google Scholar 

  • Fickbohm DJ, Katz PS (2000) Paradoxical actions of the serotonin precursor 5-hydroxytryptophan on the activity of identified serotonergic neurons in a simple motor circuit. J Neurosci 20:1622–1634

    PubMed  CAS  Google Scholar 

  • Fickbohm DJ, Spitzer N, Katz PS (2005) Pharmacological manipulation of serotonin levels in the nervous system of the opisthobranch mollusc Tritonia diomedea. Biol Bull 209:67–74

    Article  PubMed  CAS  Google Scholar 

  • Gillette R (2006) Evolution and function in serotonergic systems. Integr Comp Biol 46:838–846

    Article  CAS  Google Scholar 

  • Haydon PG, Winlow W (1981) Morphology of the giant dopamine-containing neurone, RPeD1, in Lymnaea stagnalis revealed by lucifer yellow. J Exp Biol 94:149–157

    Google Scholar 

  • Heifi F, Melamed E (1980) l-DOPA’s mechanism of action in Parkinson’s disease. Trends Neurosci 3:229–231

    Google Scholar 

  • Jaffe EH, Marty A, Schulte A, Chow RH (1998) Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. J Neurosci 18:3548–3553

    PubMed  CAS  Google Scholar 

  • Kabotyanski EA, Sakharov DA (1990) Neuronal correlates of the serotonin-dependent behavior of the pteropod mollusc Clione limacina. Neurosci Behav Physiol 21:422–435

    Article  Google Scholar 

  • Kabotyanski EA, Milosevich I, Sakharov DA (1990) Neuronal correlates of 5-hydroxytryptophan-induced sustained swimming in Aplysia fasciata. Comp Biochem Physiol 95C:39–44

    Google Scholar 

  • Kabotyanski EA, Sakharov DA, Winlow W (1991) Increase in serotonin production affects the electrical activity of serotonergic neurones. Biol Membrany 8:1158-1159

    Google Scholar 

  • Kemenes G, Elekes K, Hiripi L, Benjamin PR (1989) A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail, Lymnaea. J Neurocytol 18:193–208

    Article  PubMed  CAS  Google Scholar 

  • Kerkut GA, Sedden CB, Walker RJ (1967) Uptake of DOPA and 5-hydroxytryptophan by monoamine-forming neurones in the brain of Helix aspersa. Comp Biochem Physiol 23:159–162

    Article  PubMed  CAS  Google Scholar 

  • Kitahama K, Geffard M, Okamura H, Nagatsu I, Mons N, Jouvet M (1990) Dopamine- and dopa-immunoreactive neurons in the cat forebrain with reference to tyrosine hydroxylase-immunohistochemistry. Brain Res 518:83–94

    Article  PubMed  CAS  Google Scholar 

  • Lynn-Bullock CP, Welshhans K, Pallas SL, Katz PS (2004) The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats. J Chem Neuroanat 27:129–138

    Article  PubMed  CAS  Google Scholar 

  • Magoski NS, Bauce LG, Syed NI, Bulloch AG (1995) Dopaminergic transmission between identified neurons from the mollusk, Lymnaea stagnalis. J Neurophysiol 74:1287–1300

    PubMed  CAS  Google Scholar 

  • Marinesco S, Kolkman KE, Carew TJ (2004a) Serotonergic modulation in aplysia. I. Distributed serotonergic network persistently activated by sensitizing stimuli. J Neurophysiol 92:2468–2486

    Article  PubMed  CAS  Google Scholar 

  • Marinesco S, Wickremasinghe N, Kolkman KE, Carew TJ (2004b) Serotonergic modulation in aplysia. II. Cellular and behavioral consequences of increased serotonergic tone. J Neurophysiol 92:2487–2496

    Article  PubMed  CAS  Google Scholar 

  • Martin A (1996) Serotonin syndrome (review). Ann Emerg Med 28:520–526

    Article  PubMed  CAS  Google Scholar 

  • Misu Y, Goshima Y, Ueda H, Okamura H (1996) Neurobiology of l-DOPAergic systems. Prog Neurobiol 49:415–454

    Article  PubMed  CAS  Google Scholar 

  • Mundorf ML, Troyer KP, Hochstetler SE, Near JA, Wightman RM (2000) Vesicular Ca(2+) participates in the catalysis of exocytosis. J Biol Chem 275:9136–9142

    Article  PubMed  CAS  Google Scholar 

  • Poon MLT (1980) Induction of swimming in lamprey by l-DOPA and amino acids. J Comp Physiol 136:337–344

    Article  CAS  Google Scholar 

  • Pothos E, Desmond M, Sulzer D (1996) l-3, 4-dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro. J Neurochem 66:629–636

    Article  PubMed  CAS  Google Scholar 

  • Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118

    PubMed  CAS  Google Scholar 

  • Poulain B, Baux G, Tauc L (1986) Presynaptic transmitter content controls the number of quanta released at a neuro-neuronal cholinergic synapse. Proc Natl Acad Sci USA 83:170–173

    Article  PubMed  CAS  Google Scholar 

  • Roseberry AG, Painter T, Mark GP, Williams JT (2007) Decreased vesicular somatodendritic dopamine stores in leptin-deficient mice. J Neurosci 27:7021–7027

    Article  PubMed  CAS  Google Scholar 

  • Sakharov DA (1990) Integrative function of serotonin common to distantly related invertebrate animals. In: Gustaffson M, Reuter M (eds) The early brain. Abo Akademi Press, Turku, pp 73–88

    Google Scholar 

  • Sakharov DA (1991) Use of transmitter precursors in gastropod neuroethology. In: Kits KS, Boer HH, Joosse J (eds) Molluscan neurobiology. North-Holland, Amsterdam, pp 236–242

    Google Scholar 

  • Sakharov DA, Milosevich I, Salimova N (1989) Drug-induced locomotor stereotipies in Aplysia. Comp Biochem Physiol 93C:161–166

    CAS  Google Scholar 

  • Satterlie RA (1995) Serotonergic modulation of swimming speed in the pteropod mollusc Clione limacina. II. Peripheral modulatory neurons. J Exp Biol 198:905–916

    PubMed  CAS  Google Scholar 

  • Slade CT, Mills J, Winlow W (1981) The neuronal organisation of the paired pedal ganglia of Lymnaea stagnalis. Comp Biochem Physiol 69A:789–803

    Article  Google Scholar 

  • Spencer GE, Lukowiak K, Syed NI (2000) Transmitter-receptor interactions between growth cones of identified Lymnaea neurons determine target cell selection in vitro. J Neurosci 20:8077–8086

    PubMed  CAS  Google Scholar 

  • Syed NI, Winlow W (1989) Morphology and electrophysiology of neurons innervating the ciliated locomotor epithelium in Lymnaea stagnalis (L.). Comp Biochem Physiol 93A:633–644

    Article  Google Scholar 

  • Syed NI, Winlow W (1991) Respiratory behavior in the pond snail Lymnaea stagnalis II. Neural elements of the central pattern generator (CPG). J Comp Physiol A 169:557–568

    Google Scholar 

  • Touret M, Sarda N, Gharib A, Geffard M, Jouvet M (1991) The role of 5-hydroxytryptophan (5-HTP) in the regulation of the sleep/wake cycle in parachlorophenylalanine (p-CPA) pretreated rat: a multiple approach study. Exp Brain Res 86:117–124

    Article  PubMed  CAS  Google Scholar 

  • Ugrumov MV, Melnikova VI, Lavrentyeva AV, Kudrin VS, Rayevsky KS (2004) Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats. Neuroscience 124:629–635

    Article  PubMed  CAS  Google Scholar 

  • Ureshi M, Dainobu M, Sakai M (2002) Serotonin precursor (5-hydroxytryptophan) has a profound effect on the post-copulatory time-fixed sexually refractory stage in the male cricket, Gryllus bimaculatus DeGeer. J Comp Physiol 188A:767–779

    Google Scholar 

  • Winlow W, Haydon PG, Benjamin PR (1984) Multiple postsynaptic actions of the giant dopamine-containing neurone RPeD1 of Lymnaea stagnalis. J Exp Biol 94:137–148

    Google Scholar 

  • Zakharov I, Ierusalimski V, Balaban P (1995) Pedal serotonergic neurons modulate the synaptic input of withdrawal interneurons of Helix. Invertebrate Neurosci 1:41–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant RFBR 05-04-49812 and 08-04-00120 (D.A.S.). Personal support was provided to V.E.D. from the Science Support Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varvara E. Dyakonova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyakonova, V.E., Chistopolsky, I.A., Dyakonova, T.L. et al. Direct and decarboxylation-dependent effects of neurotransmitter precursors on firing of isolated monoaminergic neurons. J Comp Physiol A 195, 515–527 (2009). https://doi.org/10.1007/s00359-009-0428-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0428-5

Keywords

Navigation