Skip to main content
Log in

MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

3,4-Methylene-dioxy-N-methylamphetamine (MDMA, ‘ecstasy’) has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5–20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT2A antagonist MDL 11,939. 5-HT1A receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT2A receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ammari R, Bioulac B, Garcia L, Hammond C (2011) The subthalamic nucleus becomes a generator of bursts in the dopamine-depleted state. Its high frequency stimulation dramatically weakens transmission to the globus pallidus. Front Syst Neurosci 5:43. doi:10.3389/fnsys.2011.00043

    Article  PubMed Central  PubMed  Google Scholar 

  • Arcos D, Sierra A, Nunez A et al (2003) Noradrenaline increases the firing rate of a subpopulation of rat subthalamic neurones through the activation of [alpha]1-adrenoceptors. Neuropharmacology 45:1070–1079. doi:10.1016/S0028-3908(03)00315-0

    Article  CAS  PubMed  Google Scholar 

  • Ball KT, Rebec GV (2005) Role of 5-HT2A and 5-HT2C/B receptors in the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on striatal single-unit activity and locomotion in freely moving rats. Psychopharmacology 181:676–687. doi:10.1007/s00213-005-0038-z

    Article  CAS  PubMed  Google Scholar 

  • Banjaw MY, Mayerhofer A, Schmidt WJ (2003) Anticataleptic activity of cathinone and MDMA (Ecstasy) upon acute and subchronic administration in rat. Synapse 49:232–238. doi:10.1002/syn.10236

    Article  CAS  PubMed  Google Scholar 

  • Bankson MG, Cunningham KA (2001) 3,4-Methylenedioxymethamphetamine (MDMA) as a unique model of serotonin receptor function and serotonin-dopamine interactions. J Pharmacol Exp Ther 297:846–852

    CAS  PubMed  Google Scholar 

  • Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB (1988) Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149:159–163. doi:10.1016/0014-2999(88)90056-8

    Article  CAS  PubMed  Google Scholar 

  • Baufreton J, Zhu Z-T, Garret M et al (2005) Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J 19:1771–1777. doi:10.1096/fj.04-3401hyp

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Clark RD, Rothman RB (2008) Locomotor stimulation produced by 3,4-methylenedioxymethamphetamine (MDMA) is correlated with dialysate levels of serotonin and dopamine in rat brain. Pharmacol Biochem Behav 90:208–217. doi:10.1016/j.pbb.2008.02.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baumann MH, Zolkowska D, Kim I et al (2009) Effects of dose and route of administration on pharmacokinetics of (+ or −)-3,4-methylenedioxymethamphetamine in the rat. Drug Metab Dispos Biol Fate Chem 37:2163–2170. doi:10.1124/dmd.109.028506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belujon P, Bezard E, Taupignon A et al (2007) Noradrenergic modulation of subthalamic nucleus activity: behavioral and electrophysiological evidence in intact and 6-hydroxydopamine-lesioned rats. J Neurosci 27:9595–9606. doi:10.1523/JNEUROSCI.2583-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Bevan MD, Wilson CJ (1999) Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. J Neurosci 19:7617–7628

    CAS  PubMed  Google Scholar 

  • Bevan MD, Magill PJ, Terman D et al (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25:525–531. doi:10.1016/S0166-2236(02)02235-X

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Bhattacharya A, Ghosal S (1998) Anxiogenic activity of methylenedioxymethamphetamine (Ecstasy): an experimental study. Biog Amines 14:217–237

    CAS  Google Scholar 

  • Bishop C, Taylor JL, Kuhn DM et al (2006) MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation. Eur J Neurosci 23:2669–2676. doi:10.1111/j.1460-9568.2006.04790.x

    Article  PubMed  Google Scholar 

  • Bradberry CW, Sprouse JS, Aghajanian GK, Roth RH (1990) 3,4-Methylenedioxymethamphetamine (MDMA)-induced release of endogenous serotonin from the rat dorsal raphe nucleus in vitro: effects of fluoxetine and tryptophan. Neurochem Int 17:509–513. doi:10.1016/0197-0186(90)90037-T

    Article  CAS  PubMed  Google Scholar 

  • Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254:456–464

    CAS  PubMed  Google Scholar 

  • Chemel BR, Roth BL, Armbruster B et al (2006) WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology 188:244–251. doi:10.1007/s00213-006-0490-4

    Article  CAS  PubMed  Google Scholar 

  • Chu T, Kumagai Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796

    Article  CAS  PubMed  Google Scholar 

  • Davidson C, Ho M, Price GW et al (1997) (+)-WAY 100135, a partial agonist, at native and recombinant 5-HT1B/1D receptors. Br J Pharmacol 121:737–742. doi:10.1038/sj.bjp.0701197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De la Torre R, Farré M (2004) Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol Sci 25:505–508. doi:10.1016/j.tips.2004.08.001

    Article  PubMed  Google Scholar 

  • Di Matteo V, Pierucci M, Esposito E et al (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. In: Giuseppe Di Giovann, Di MatteoV, Esposito E (eds) Prog Brain Res Elsevier, pp 423–463

  • Fantegrossi WE, Godlewski T, Karabenick RL et al (2003) Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine (“ecstasy”) and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice. Psychopharmacology 166:202–211. doi:10.1007/s00213-002-1261-5

    CAS  PubMed  Google Scholar 

  • Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59:360–417. doi:10.1124/pr.107.07103

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PJ, Korth KM, Robinson SR, Baker GB (2002) Multiple 5-HT receptors are involved in the effects of acute MDMA treatment: studies on locomotor activity and responding for conditioned reinforcement. Psychopharmacology 162:282–291. doi:10.1007/s00213-002-1104-4

    Article  CAS  PubMed  Google Scholar 

  • Flores G, Rosales MG, Hernández S et al (1995) 5-Hydroxytryptamine increases spontaneous activity of subthalamic neurons in the rat. Neurosci Lett 192:17–20. doi:10.1016/0304-3940(95)11597-P

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto K, Kita H (1993) Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Res 609:185–192. doi:10.1016/0006-8993(93)90872-K

    Article  CAS  PubMed  Google Scholar 

  • Glykys J, Mody I (2006) Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABAA receptor α5 subunit-deficient mice. J Neurophysiol 95:2796–2807. doi:10.1152/jn.01122.2005

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM et al (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508. doi:10.1124/pr.55.3.3

    Article  CAS  PubMed  Google Scholar 

  • Green A, King M, Shortall S, Fone K (2012) Lost in translation: preclinical studies on 3,4-methylenedioxymethamphetamine provide information on mechanisms of action, but do not allow accurate prediction of adverse events in humans. Br J Pharmacol 166:1523–1536. doi:10.1111/j.1476-5381.2011.01819.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6. doi:10.1186/1471-2210-6-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Hentschke H, Stüttgen MC (2011) Computation of measures of effect size for neuroscience data sets. Eur J Neurosci 34:1887–1894. doi:10.1111/j.1460-9568.2011.07902.x

    Article  PubMed  Google Scholar 

  • Hollander M, Wolfe DA, Chicken E (2014) Nonparametric statistical methods, 3rd edn. Wiley, Hoboken, New Jersey, USA

    Google Scholar 

  • Huot P, Johnston TH, Lewis KD et al (2011) Characterization of 3,4-methylenedioxymethamphetamine (MDMA) enantiomers in vitro and in the MPTP-lesioned primate: R-MDMA reduces severity of dyskinesia, whereas S-MDMA extends duration of ON-time. J Neurosci 31:7190–7198. doi:10.1523/JNEUROSCI.1171-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Iravani MM, Jackson MJ, Kuoppamäki M et al (2003) 3,4-Methylenedioxymethamphetamine (Ecstasy) inhibits dyskinesia expression and normalizes motor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Neurosci 23:9107–9115

    CAS  PubMed  Google Scholar 

  • Kehne JH, Ketteler HJ, McCloskey TC et al (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacol 15:116–124. doi:10.1016/0893-133X(95)00160-F

    Article  CAS  Google Scholar 

  • Koch S, Galloway MP (1997) MDMA induced dopamine release in vivo: role of endogenous serotonin. J Neural Transm 104:135–146

  • Korytová H (1977) Arousal-induced increase of cortical [K+] in unrestrained rats. Experientia 33:242–244. doi:10.1007/BF02124090

    Article  PubMed  Google Scholar 

  • Lebsanft HB, Mayerhofer A, Kovar K-A, Schmidt WJ (2003) Is the ecstasy-induced ipsilateral rotation in 6-hydroxydopamine unilaterally lesioned rats dopamine independent? J Neural Transm 110:707–718. doi: 10.1007/s00702-003-0823-y

  • Lettfuss NY, Fischer K, Sossi V et al (2012) Imaging DA release in a rat model of L-DOPA-induced dyskinesias: a longitudinal in vivo PET investigation of the antidyskinetic effect of MDMA. NeuroImage 63:423–433. doi:10.1016/j.neuroimage.2012.06.051

    Article  CAS  PubMed  Google Scholar 

  • Liechti ME, Baumann C, Gamma A, Vollenweider FX (2000a) Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacol 22:513–521. doi:10.1016/S0893-133X(99)00148-7

    Article  CAS  Google Scholar 

  • Liechti ME, Saur MR, Gamma A et al (2000b) Psychological and physiological effects of MDMA (“Ecstasy”) after pretreatment with the 5-HT2 antagonist ketanserin in healthy humans. Neuropsychopharmacology 23:396–404. doi:10.1016/S0893-133X(00)00126-3

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Sabol KE, Seiden LS (1996) Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature in the rat. J Pharmacol Exp Ther 278:258–267

    CAS  PubMed  Google Scholar 

  • Margolis J (2001) Ecstasy’s dividend. In: MAPS. http://www.maps.org/media/nytimes-parkinsons.html. 19 Aug 2013

  • Meyer A, Mayerhofer A, Kovar K-A, Schmidt WJ (2002) Rewarding effects of the optical isomers of 3,4-methylenedioxy-methylamphetamine (’Ecstasy’) and 3,4-methylenedioxy-ethylamphetamine (’Eve’) measured by conditioned place preference in rats. Neurosci Lett 330:280–284

    Article  CAS  PubMed  Google Scholar 

  • Mithoefer MC, Wagner MT, Mithoefer AT et al (2013) Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol (Oxf) 27:28–39. doi:10.1177/0269881112456611

    Article  CAS  Google Scholar 

  • Müller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81:133–178. doi:10.1016/j.pneurobio.2007.01.001

    Article  PubMed  Google Scholar 

  • Nash JF, Roth BL, Brodkin JD et al (1994) Effect of the R(−) and S(+) isomers of MDA and MDMA on phosphatidyl inositol turnover in cultured cells expressing 5-HT2A or 5-HT2C receptors. Neurosci Lett 177:111–115

    Article  CAS  PubMed  Google Scholar 

  • Nelson AJD, Thur KE, Marsden CA, Cassaday HJ (2013) Paradoxical effects of low dose MDMA on latent inhibition in the rat. Neuropharmacology 67:331–336. doi:10.1016/j.neuropharm.2012.11.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orejarena MJ, Lanfumey L, Maldonado R, Robledo P (2011) Involvement of 5-HT2A receptors in MDMA reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. Int J Neuropsychopharmacol 14:927–940. doi:10.1017/S1461145710001215

    Article  CAS  PubMed  Google Scholar 

  • Parrott AC (2012) MDMA and 5-HT neurotoxicity: the empirical evidence for its adverse effects in humans: no need for translation. Br J Pharmacol 166:1518–1520. doi:10.1111/j.1476-5381.2012.01941.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682. doi:10.1038/23281

    Article  CAS  PubMed  Google Scholar 

  • Reinhard C, Wolffgramm J (2006) Long-term voluntary consumption of MDMA and THC in rats is modified by individual and situational factors. Addict Biol 11:131–144. doi:10.1111/j.1369-1600.2006.00022.x

    Article  CAS  PubMed  Google Scholar 

  • Richelson E, Pfenning M (1984) Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine uptake. Eur J Pharmacol 104:277–286. doi:10.1016/0014-2999(84)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH (2002) Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther 95:73–88. doi:10.1016/S0163-7258(02)00234-6

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM et al (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41. doi:10.1002/1098-2396(20010101)39:1<32:AID-SYN5>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G, Wall SC (1992) The molecular mechanism of “ecstasy” [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci USA 89:1817–1821. doi:10.1073/pnas.89.5.1817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 240:1–7

    CAS  PubMed  Google Scholar 

  • Schmidt WJ, Mayerhofer A, Meyer A, Kovar K-A (2002) Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci Lett 330:251–254

    Article  CAS  PubMed  Google Scholar 

  • Shen K-Z, Kozell LB, Johnson SW (2007) Multiple conductances are modulated by 5-hydroxytryptamine receptor subtypes in rat subthalamic nucleus neurons. Neuroscience 148:996–1003. doi:10.1016/j.neuroscience.2007.07.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sprouse JS, Bradberry CW, Roth RH, Aghajanian GK (1989) MDMA (3,4-methylenedioxymethamphetamine) inhibits the firing of dorsal raphe neurons in brain slices via release of serotonin. Eur J Pharmacol 167:375–383

    Article  CAS  PubMed  Google Scholar 

  • Stanford IM, Kantaria MA, Chahal HS et al (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT2C, 5-HT4 and 5-HT1A receptors. Neuropharmacology 49:1228–1234. doi:10.1016/j.neuropharm.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  • Tofighy A, Abbott A, Centonze D et al (2003) Excitation by dopamine of rat subthalamic nucleus neurones in vitro—a direct action with unconventional pharmacology. Neuroscience 116:157–166. doi:10.1016/S0306-4522(02)00546-8

    Article  CAS  PubMed  Google Scholar 

  • Trigo JM, Renoir T, Lanfumey L et al (2007) 3,4-Methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice. Biol Psychiatry 62:669–679. doi:10.1016/j.biopsych.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  • Verrico CD, Miller GM, Madras BK (2007) MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology 189:489–503. doi:10.1007/s00213-005-0174-5

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ, Bevan MD (2011) Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson’s disease. Neuroscience 198:54–68. doi:10.1016/j.neuroscience.2011.06.049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson CL, Puntis M, Lacey MG (2004) Overwhelmingly asynchronous firing of rat subthalamic nucleus neurones in brain slices provides little evidence for intrinsic interconnectivity. Neuroscience 123:187–200

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Wang L, Kitai ST (2005) Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 93:1145–1157. doi:10.1152/jn.00561.2004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Ulrich Nagel for the kind gift of MDMA, and thank Christine Pedroarena for providing us with 5-HT and Bernd Antkowiak for valuable discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hentschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebig, L., von Ameln-Mayerhofer, A. & Hentschke, H. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro. Exp Brain Res 233, 137–147 (2015). https://doi.org/10.1007/s00221-014-4095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4095-6

Keywords

Navigation