Skip to main content
Log in

Swim pacemakers in box jellyfish are modulated by the visual input

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A major part of the cubozoan central nervous system is situated in the eye-bearing rhopalia. One of the neuronal output channels from the rhopalia carries a swim pacemaker signal, which has a one-to-one relation with the swim contractions of the bell shaped body. Given the advanced visual system of box jellyfish and that the pacemaker signal originates in the vicinity of these eyes, it seems logical to assume that the pacemakers are modified by the visual input. Here, the firing frequency and distribution of inter-signal intervals (ISIs) of single pacemakers are examined in the Caribbean box jellyfish, Tripedalia cystophora. It is shown that the absolute ambient light intensity, if kept constant, has no influence on the signal, but if the intensity changes, it has a major impact on both frequency and ISIs. If the intensity suddenly drops there is an increase in firing frequency, and the ISIs become more homogeneously distributed. A rise in intensity, on the other hand, produces a steep decline in the frequency and makes the ISIs highly variable. These electrophysiological data are correlated with behavioral observations from the natural habitat of the medusae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arkett SA (1985) The shadow response of a hydromedusan (Polyorchis penicillatus): behavioral mechanisms controlling diel and ontogenic vertical migration. Biol Bull 169(2):297–312

    Article  Google Scholar 

  • Arkett SA, Spencer AN (1986a) Neuronal mechanisms of a hydromedusan shadow reflex. I. Identified reflex components and sequence of events. J Comp Physiol A 159:201–213

    Article  Google Scholar 

  • Arkett SA, Spencer AN (1986b) Neuronal mechanisms of a hydromedusan shadow reflex. II. Graded response of reflex components, possible mechanisms of photic integration and functional significance. J Comp Physiol A 159:215–225

    Article  Google Scholar 

  • Berger EW (1898) The histological structure of the eyes of cubomedusae. J Comp Neurol 8(3):223–230

    Article  Google Scholar 

  • Buskey EJ (2003) Behavioral adaptations of the cubozoan medusa Tripedalia cystophora for feeding on copepod (Dioithona oculata) swarms. Mar Biol 142:225–232

    Google Scholar 

  • Claus C (1878) Ueber Charybdea marsupialis. Arbeiten aus dem zoologischen Institut Universität Wien 1(2):1–56

    Google Scholar 

  • Derby CD (1995) Single unit electrophysiological recordings from crustacean chemoreceptor neurons. In: Spielman AI, Brand JG (eds) Experimental cell biology of taste and olfaction. Current techniques and protocols. CRC Press, New York, pp 241–250

    Google Scholar 

  • Dickinson PS (2006) Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr Opin Neurobiol 16:604–614

    Article  PubMed  CAS  Google Scholar 

  • Garm A, Derby CD, Høeg JT (2004) Mechanosensory neurons with bend- and osmo-sensitivity in mouthpart setae from the spiny lobster Panulirus argus. Biol Bull 207:195–208

    Article  PubMed  Google Scholar 

  • Garm A, Ekström P, Boudes M, Nilsson DE (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325:333–343

    Article  PubMed  CAS  Google Scholar 

  • Garm A, Coates MM, Seymour J, Gad R, Nilsson DE (2007a) The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J Comp Physiol A 193:547–557

    Article  CAS  Google Scholar 

  • Garm A, O’Connor M, Parkefelt L, Nilsson DE (2007b) Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J Exp Biol 210:3616–3623

    Article  PubMed  CAS  Google Scholar 

  • Gladfelter WG (1973) A comparative analysis of the locomotory systems of medusoid Cnidaria. Helgoländer Wiss Meeresuntersuch 25:228–272

    Article  Google Scholar 

  • Hamner WM, Jones MS, Hamner PP (1995) Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria, Cubozoa). Mar Freshw Res 46:985–990

    Article  Google Scholar 

  • Hartwick RF (1991) Observations on the anatomy, behaviour, reproduction and life cycle of the cubozoan Carybdea sivickisi. Hydrobiologia 216/217:171–179

    Article  Google Scholar 

  • Laska G, Hündgen M (1982) Morphologie und Ultrastruktur der Lichtsinnesorgane von Tripedalia cystophora Conant (Cnidaria, Cubozoa). Zoologischer Jahrbuch der Anatomie 108:107–123

    Google Scholar 

  • Mackie GO (1975) Neurobiology of Stomotoca. II. Pacemakers and conduction pathways. J Neurobiol 6(4):357–378

    Article  PubMed  CAS  Google Scholar 

  • Mackie GO (2004) Central neural circuitry in the jellyfish Aglantha: a model “simple nervous system”. neurosignals 13:5–19

    Article  PubMed  CAS  Google Scholar 

  • Mackie GO, Meech RW (2000) Central circuitry in the jellyfish Aglantha digitale. III. The rootlet and pacemaker systems. J Exp Biol 203:1797–1807

    PubMed  CAS  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11(23):R986–R996

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Al Taylor (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699

    Article  PubMed  CAS  Google Scholar 

  • Nilsson DE, Coates MM, Gislén l, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Garm A, Anderson F, Nilsson DE (2007) Highly non-linear filtering in box jellyfish photoreceptors. J Exp Biol (Submitted)

  • Passano LM (1965) Pacemakers and activity patterns in medusae: homage to Romanes. Am Zool 5:465–481

    PubMed  CAS  Google Scholar 

  • Pearse JS, Pearse VB (1978) Vision in cubomedusan jellyfish. Science 199:458–458

    Article  PubMed  CAS  Google Scholar 

  • Romanes GJ (1876) Preliminary observations on the locomotor system of medusae. Philos Trans R Soc Lond B Biol Sci 66:269–313

    Google Scholar 

  • Satterlie RA (1979) Central control of swimming in the cubomedusan jellyfish Carybdea rastonii. J Comp Physiol A 133:357–367

    Article  Google Scholar 

  • Satterlie RA (2002) Neural control of swimming in jellyfish: a comparative story. Can J Zool 80:1654–1669

    Article  Google Scholar 

  • Satterlie RA, Nolen TG (2001) Why do cubomedusae have only four swim pacemakers? J Exp Biol 204:1413–1419

    PubMed  CAS  Google Scholar 

  • Seymour J, Carrette TJ, Sutherland PA (2004) Do jellyfish sleep at night? Med J Aust 181(11/12):707

    Google Scholar 

  • Shorten MO, Devenport J, Seymour J, Cross MC, Carrette TJ, Woodward G, Cross TF (2005) Kinematic analysis of swimming in Australian box jellyfish, Chiropsalmus sp. and Chironex fleckeri (Cubozoa, Cnidaria: Chirodropidae). J Zool (Lond) 267(4):371–380

    Article  Google Scholar 

  • Singla CL (1974) Ocelli of hydromedusae. Cell Tissue Res 149:413–429

    Article  PubMed  CAS  Google Scholar 

  • Skogh C, Garm A, Nilsson DE, Ekström P (2006) The bilateral symmetric rhopalial nervous system of box jellyfish. J Morphol 267:1391–1405

    Article  PubMed  CAS  Google Scholar 

  • Stewart SE (1996) Field behavior of Tripedalia cystophora (class Cubozoa). Mar Freshw Behav Physiol 27(2–3):175–188

    Article  Google Scholar 

  • Taddei-Ferretti C, Musio C, Santillo S, Cotugno A (2004) The photobiology of Hydra’s periodic activity. Hydrobiologia 530/531:129–134

    Article  CAS  Google Scholar 

  • Werner B (1971) Life cycle of Tripedalia cystophora Conant (Cubomedusae). Nature 232:582–583

    Article  PubMed  CAS  Google Scholar 

  • Yamasu T, Yoshida M (1973) Electron microscopy on the photoreceptors of an anthomedusa and a scyphomedusa. Pub Seto Mar Biol Lab 20:757–778

    Google Scholar 

  • Yamasu T, Yoshida M (1976) Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel. Cell Tissue Res 170:325–339

    Article  PubMed  CAS  Google Scholar 

  • Yatsu N (1917) Notes on the physiology of Charybdea rastonii. J Coll Sci 40(3):1–12

    Google Scholar 

  • Yoshida M, Ohtsu K (1973) A preliminary note on the electrical response to shadows of the anthomedusa, Spirocodon saltatrix. Pub Seto Mar Biol Lab 20:647–651

    Google Scholar 

Download references

Acknowledgments

We greatly appreciate the help offered by Linda Parkefelt, Lund University, and Tony Marshak, University of Puerto Rico, and we would like to thank Peter Ekström, Lund University, for commenting on the manuscript. A.G. acknowledge grant # 2005-1–74 from the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Garm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garm, A., Bielecki, J. Swim pacemakers in box jellyfish are modulated by the visual input. J Comp Physiol A 194, 641–651 (2008). https://doi.org/10.1007/s00359-008-0336-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0336-0

Keywords

Navigation