Skip to main content
Log in

Spatial-specific action of serotonin within the leech midbody ganglion

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Serotonin is a conspicuous neuromodulator in the nervous system of many vertebrates and invertebrates. In previous experiments performed in the leech nervous system, we compared the effect of the amine released from endogenous sources [using selective serotonin reuptake inhibitors (SSRIs), e.g. fluoxetine] with that of bath-applied serotonin. The results suggested that the amine does not reach all its targets in a uniform way, but produces the activation of an interneuronal pathway that generated specific synaptic responses on different neurons. Taking into account that the release of the amine is often regulated at the presynaptic level, we have investigated whether autoreceptor antagonists mimic the SSRIs effect. We found that methiothepin (100 μM) produced similar effects than fluoxetine. To further test the hypothesis that endogenous serotonin produce its effect by acting locally at specific sites, we analyzed the effect of iontophoretic applications of serotonin. We found a site in the neuropil of the leech ganglia where serotonin application mimicked the effect of the SSRIs and the 5-HT antagonist. The results further support the view that the effect of serotonin exhibits a spatial specificity that can be relevant to understand its modulatory actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta-Urquidi J, Sahley CL, Kleinhaus AL (1989) Serotonin differentially modulates two K+ currents in the Retzius cell of the leech. J Exp Biol 145:403–417

    PubMed  CAS  Google Scholar 

  • Angstadt JD, Friesen WO (1993) Modulation of swimming behavior in the medicinal leech. I. Effects of serotonin on the electrical properties of swim-gating cell 204. J Comp Physiol A 172:223–234

    PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Bruns D, Jahn R (1995) Real-time measurement of transmitter release from single synaptic vesicles. Nature 377:62–65

    Article  PubMed  CAS  Google Scholar 

  • Burgin AM, Szczupak L (2003) Network interactions among sensory neurons in the leech. J Comp Physiol A 189:59–67

    CAS  Google Scholar 

  • Burrell BD, Sahley CL, Muller KJ (2001) Non-associative learning and serotonin induce similar bidirectional changes in excitability of a neuron critical for learning in the medicinal leech. J Neurosci 21:1401–1412

    PubMed  CAS  Google Scholar 

  • Calviño MA, Iscla IR, Szczupak L (2005) Selective serotonin reuptake inhibitors induce spontaneous interneuronal activity in the leech nervous system. J Neurophysiol 93:2644–2655

    Article  PubMed  CAS  Google Scholar 

  • Catarsi S, Garcia-Gil M, Traina G, Brunelli M (1990) Seasonal variation of serotonin content and nonassociative learning of swim induction in the leech Hirudo medicinalis. J Comp Physiol A 167:469–474

    Article  PubMed  CAS  Google Scholar 

  • Cohen JE, Onyike CU, McElroy VL, Lin AH, Abrams TW (2003) Pharmacological characterization of an adenylyl cyclase-coupled 5-HT receptor in Aplysia: comparison with mammalian 5-HT receptors. J Neurophysiol 89:1440–1455

    Article  PubMed  CAS  Google Scholar 

  • Crisp KM, Mesce KA (2006) Beyond the central pattern generator: amine modulation of decision-making neural pathways descending from the brain of the medicinal leech. J Exp Biol 209:1746–1756

    Article  PubMed  CAS  Google Scholar 

  • De-Miguel FF, Trueta C (2005) Synaptic and extrasynaptic secretion of serotonin. Cell Mol Neurobiol 25:297–312

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach TJ, Sloley BD, Goldberg JI (1995) Neurite branch development of an identified serotonergic neuron from embryonic Helisoma: evidence for autoregulation by serotonin. Dev Biol 167:282–293

    Article  PubMed  CAS  Google Scholar 

  • Douglas CL, Baghdoyan HA, Lydic R (2001) M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. J Pharmacol Exp Ther 299:960–966

    PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14:39–57

    Article  PubMed  CAS  Google Scholar 

  • Hashemzadeh-Gargari H, Friesen WO (1989) Modulation of swimming activity in the medicinal leech by serotonin and octopamine. Comp Biochem Physiol 94C:295–302

    CAS  Google Scholar 

  • Iscla I, Arini PD, Szczupak L (1999) Differential channeling of sensory stimuli onto a motor neuron in the leech. J Comp Physiol A 184:233–241

    Article  PubMed  CAS  Google Scholar 

  • Jacobs BL, Fornal CA (1993) 5-HT and motor control: a hypothesis. Trends Neurosci 16:346–352

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E (2001) Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J Physiol 533:31–40

    Article  PubMed  CAS  Google Scholar 

  • Kerkut GA, Walker RJ (1967) The action of acetylcholine, dopamine and 5-hydroxytryptamine on the spontaneous activity of the cells of Retzius of the leech, Hirudo medicinalis. Br J Pharmacol Chemother 30:644–654

    PubMed  CAS  Google Scholar 

  • Kristan Jr WB, Nusbaum MP (1982–1983) The dual role of serotonin in leech swimming. J Physiol (Paris) 78:743–747

  • Leake LD, Koubanakis M (1995) Central and peripheral 5-HT receptors in the leech (Hirudo medicinalis) redefined. Gen Pharmacol 26:1709–1717

    PubMed  CAS  Google Scholar 

  • Lent CM, Dickinson MH (1984) Serotonin integrates the feeding behavior of the medicinal leech. J Comp Physiol A 154:457–471

    Article  CAS  Google Scholar 

  • Lent CM, Zundel D, Freedman E, Groome JR (1991) Serotonin in the leech central nervous system: anatomical correlates and behavioral effects. J Comp Physiol A 168:191–200

    Article  PubMed  CAS  Google Scholar 

  • Lessmann V, Dietzel ID (1991) Development of serotonin-induced ion currents in identified embryonic Retzius cells from the medicinal leech (Hirudo medicinalis). J Neurosci 11:800–809

    PubMed  CAS  Google Scholar 

  • McAddo DJ, Coggeshall RE (1976) Gas chromatographic-mass spectrometric analysis of biogenic amines in identified neurons and tissues of Hirudo medicinalis. J Neurochem 26:163–7

    Google Scholar 

  • Macagno ER (1980) Number and distribution of neurons in leech segmental ganglia. J Comp Neurol 190:283–302

    Article  PubMed  CAS  Google Scholar 

  • Mangan PS, Curran GA, Hurney CA, Friesen WO (1994) Modulation of swimming behavior in the medicinal leech. III. Control of cellular properties in motor neurons by serotonin. J Comp Physiol A 175:709–722

    Article  PubMed  CAS  Google Scholar 

  • Marin-Burgin A, Szczupak L (2000) Processing of sensory signals by a non-spiking neuron in the leech. J Comp Physiol A 186:989–997

    Article  PubMed  CAS  Google Scholar 

  • Marinesco S, Wickremasinghe N, Carew TJ (2006) Regulation of behavioral and synaptic plasticity by serotonin release within local modulatory fields in the CNS of Aplysia. J Neurosci 26:12682–12693

    Article  PubMed  CAS  Google Scholar 

  • Mason A, Leake LD (1978) Morphology of leech retzius cells demonstrated by intracellular injection of horseradish peroxidase. Comp Biochem Physiol 61A:213–216

    Article  Google Scholar 

  • Mercer AR, Emptage NJ, Carew TJ (1991) Pharmacological dissociation of modulatory effects of serotonin in Aplysia sensory neurons. Science 254:1811–1813

    Article  PubMed  CAS  Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (1981) Neurobiology of the leech. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Nusbaum MP (1986) Synaptic basis of swim initiation in the leech. III. Synaptic effects of serotonin-containing interneurones (cells 21 and 61) on swim CPG neurones (cells 18 and 208). J Exp Biol 122:303–321

    PubMed  CAS  Google Scholar 

  • O’Gara BA, Illuzzi FA, Chung M, Portnoy AD, Fraga K, Frieman VB (1999) Serotonin induces four pharmacologically separable contractile responses in the pharynx of the leech Hirudo medicinalis. Gen Pharmacol 32:669–681

    Article  PubMed  CAS  Google Scholar 

  • Perrier JF, Hounsgaard J (2003) 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current. J Neurophysiol 89:954–959

    Article  PubMed  CAS  Google Scholar 

  • Pineyro G, Blier P (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 51:533–591

    PubMed  CAS  Google Scholar 

  • Roberts C, Price GW, Jones BJ (1997) The role of 5-HT1B/1D receptors in the modulation of 5-hydroxytryptamine levels in the frontal cortex of the conscious guinea pig. Eur J Pharmacol 326:23–30

    Article  PubMed  CAS  Google Scholar 

  • Sahley CL (1995) What we have learned from the study of learning in the leech. J Neurobiol 27:434–445

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Armass S, Merz DC, Drapeau P (1991) Distinct receptors, second messengers and conductances underlying the dual responses to serotonin in an identified leech neurone. J Exp Biol 155:531–547

    PubMed  CAS  Google Scholar 

  • Sargent PB, Yau KW, Nicholls JG (1977) Extrasynaptic receptors on cell bodies of neurons in central nervous system of the leech. J Neurophysiol 40:446–452

    PubMed  CAS  Google Scholar 

  • Schmidt BJ, Jordan LM (2000) The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res Bull 53:689–710

    Article  PubMed  CAS  Google Scholar 

  • Sombati S, Hoyle G (1984) Central nervous sensitization and dishabituation of reflex action in an insect by the neuromodulator octopamine. J Neurobiol 15:455–480

    Article  PubMed  CAS  Google Scholar 

  • Sosa MA, Spitzer N, Edwards DH, Baro DJ (2004) A crustacean serotonin receptor: cloning and distribution in the thoracic ganglia of crayfish and freshwater prawn. J Comp Neurol 473:526–537

    Article  PubMed  CAS  Google Scholar 

  • Spitzer N, Antonsen BL, Edwards DH (2005) Immunocytochemical mapping and quantification of expression of a putative type 1 serotonin receptor in the crayfish nervous system. J Comp Neurol 484:261–282

    Article  PubMed  CAS  Google Scholar 

  • Stamford JA, Davidson C, McLaughlin DP, Hopwood SE (2000) Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: parallel purposes or pointless plurality? Trends Neurosci 23:459–465

    Article  PubMed  CAS  Google Scholar 

  • Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    PubMed  CAS  Google Scholar 

  • Szczupak L, Jordan S, Kristan WB Jr (1993) Segment-specific modulation of the electrophysiological activity of leech Retzius neurons by acetylcholine. J Exp Biol 183:115–135

    PubMed  CAS  Google Scholar 

  • Teshiba T, Shamsian A, Yashar B, Yeh SR, Edwards DH, Krasne FB (2001) Dual and opposing modulatory effects of serotonin on crayfish lateral giant escape command neurons. J Neurosci 21:4523–4529

    PubMed  CAS  Google Scholar 

  • Tierney AJ (2001) Structure and function of invertebrate 5-HT receptors: a review. Comp Biochem Physiol A Mol Integr Physiol 128:791–804

    Article  PubMed  CAS  Google Scholar 

  • Wadepuhl M (1987) A morpho-and physiologically uncommon neuron in the leech CNS. Naturwissenschaften 74:S.43

    Article  Google Scholar 

  • Wessel R, Kristan WB Jr, Kleinfeld D (1999) Supralinear summation of synaptic inputs by an invertebrate neuron: dendritic gain is mediated by an “inward rectifier” K(+) current. J Neurosci 19:5875–5888

    PubMed  CAS  Google Scholar 

  • Willard AL (1981) Effects of serotonin on the generation of the motor program for swimming by the medicinal leech. J Neurosci 1:936–944

    PubMed  CAS  Google Scholar 

  • Wittenberg G, Loer CM, Adamo SA, Kristan WB Jr (1990) Segmental specialization of neuronal connectivity in the leech. J Comp Physiol A 167:453–459

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Lin F, Zheng X, Sehgal A (2005) Serotonin modulates circadian entrainment in Drosophila. Neuron 47:115–127

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edition. Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from FIRCA-NIH (USA) and UBACyT (Argentina). The authors thank Mariano Rodriguez for helping us with the analysis of the recordings, and also thank him, Sergio Daicz and Dr. Lorena Rela for their discussion of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Ana Calviño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calviño, M.A., Szczupak, L. Spatial-specific action of serotonin within the leech midbody ganglion. J Comp Physiol A 194, 523–531 (2008). https://doi.org/10.1007/s00359-008-0326-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0326-2

Keywords

Navigation