Skip to main content
Log in

Phase resetting and phase singularity of an insect circannual oscillator

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In circadian rhythms, the shape of the phase response curves (PRCs) depends on the strength of the resetting stimulus. Weak stimuli produce Type 1 PRCs with small phase shifts and a continuous transition between phase delays and advances, whereas strong stimuli produce Type 0 PRCs with large phase shifts and a distinct break point at the transition between delays and advances. A stimulus of an intermediate strength applied close to the break point in a Type 0 PRC sometimes produces arrhythmicity. A PRC for the circannual rhythm was obtained in pupation of the varied carpet beetle, Anthrenus verbasci, by superimposing a 4-week long-day pulse (a series of long days for 4 weeks) over constant short days. The shape of this PRC closely resembles that of the Type 0 PRC. The present study shows that the PRC to 2-week long-day pulses was Type 1, and that a 4-week long-day pulse administered close to the PRC’s break point induced arrhythmicity in pupation. It is, therefore, suggested that circadian and circannual oscillators share the same mode in phase resetting to the stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LD:

Light/dark

PRC:

Phase response curve

References

  • Blake GM (1959) Control of diapause by an ‘internal clock’ in Anthrenus verbasci (L.) (Col., Dermestidae). Nature 183:126–127. doi:10.1038/183126a0

    Article  Google Scholar 

  • Bünning E (1935) Zur Kenntnis der endonomen Tagesrhythmik bei Insekten und bei Pflanzen. Ber Dtsch Bot Ges 53:594–623

    Google Scholar 

  • Dunlap JC, Loros JJ, DeCoursey PJ (eds) (2004) Chronobiology—biological timekeeping. Sinauer, Sunderland

  • Engelmann W, Johnsson A (1978) Attenuation of the petal movement rhythm in Kalanchoë with light pulses. Physiol Plant 43:68–76. doi:10.1111/j.1399-3054.1978.tb01569.x

    Article  Google Scholar 

  • Goto SG, Han B, Denlinger DL (2006) A nondiapausing variant of the flesh fly, Sarcophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless. J Insect Physiol 52:1213–1218. doi:10.1016/j.jinsphys.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  • Gwinner E (1986) Circannual rhythms. Springer, Berlin

    Google Scholar 

  • Honma S, Honma K (1999) Light-induced uncoupling of multioscillatory circadian system in a diurnal rodent, Asian chipmunk. Am J Physiol Regul Integr Comp Physiol 276:R1390–R1396

    CAS  Google Scholar 

  • Huang G, Wang L, Liu Y (2006) Molecular mechanism of suppression of circadian rhythms by a critical stimulus. EMBO J 25:5349–5357. doi:10.1038/sj.emboj.7601397

    Article  PubMed  CAS  Google Scholar 

  • Jalife J, Antzelevitch C (1979) Phase resetting and annihilation of pacemaker activity in cardiac tissue. Science 206:695–697. doi:10.1126/science.493975

    Article  PubMed  CAS  Google Scholar 

  • Jewett ME, Kronauer RE, Czeisler CA (1991) Light-induced suppression of endogenous circadian amplitude in humans. Nature 350:59–62. doi:10.1038/350059a0

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH (1999) Forty years of PRCs—what have we learned? Chronobiol Int 16:711–743

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Kondo T (1992) Light pulses induce “singular” behavior and shorten the period of the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. J Biol Rhythms 7:313–327. doi:10.1177/074873049200700405

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Elliott JA, Foster R (2003) Entrainment of circadian programs. Chronobiol Int 20:741–774. doi:10.1081/CBI-120024211

    Article  PubMed  Google Scholar 

  • Johnsson A (1976) Oscillatory water regulation in plants. Bull Inst Math Appl 12:22–26

    Google Scholar 

  • Johnsson A, Karlsson HG, Engelmann W (1973) Phase shift effects in the Kalanchoë petal rhythm due to two or more light pulses. A theoretical and experimental study. Physiol Plant 28:134–142. doi:10.1111/j.1399-3054.1973.tb01164.x

    Article  Google Scholar 

  • Johnsson A, Brogårdht T, Holje Ø (1979) Oscillatory transpiration of Avena plants: perturbation experiments provide evidence for a stable point of singularity. Physiol Plant 45:393–398. doi:10.1111/j.1399-3054.1979.tb02602.x

    Article  Google Scholar 

  • Johnsson A, Bostrøm AC, Pedersen M (1993) Perturbation of the Desmodium leaflet oscillation by electric current pulses. J Interdiscipl Cycle Res 24:17–32

    Google Scholar 

  • Kondo T, Ishiura M (1999) The circadian clocks of plants and cyanobacteria. Trends Plant Sci 4:171–176. doi:10.1016/S1360-1385(99)01410-7

    Article  PubMed  Google Scholar 

  • Lakin-Thomas PL (1995) A beginner’s guide to limit cycles, their uses and abuses. Biol Rhythm Res 26:216–232

    Article  Google Scholar 

  • Lankinen P, Riihimaa AJ (1992) Weak circadian eclosion rhythmicity in Chymomyza costata (Diptera: Drosophilidae), and its independence of diapause type. J Insect Physiol 38:803–811. doi:10.1016/0022-1910(92)90033-A

    Article  Google Scholar 

  • Leloup JC, Goldbeter A (2001) A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse. Am J Physiol Regul Integr Comp Physiol 280:R1206–R1212

    PubMed  CAS  Google Scholar 

  • Leloup JC, Gonze D, Goldbeter A (1999) Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J Biol Rhythms 14:433–448. doi:10.1177/074873099129000948

    Article  PubMed  CAS  Google Scholar 

  • Lincoln GA, Clarke IJ, Hut RA, Hazlerigg DG (2006) Characterizing a mammalian circannual pacemaker. Science 314:1941–1944. doi:10.1126/science.1132009

    Article  PubMed  CAS  Google Scholar 

  • Malinowski JR, Laval-Martin DL, Edmunds LN Jr (1985) Circadian oscillators, cell cycles, and singularities: light perturbations of the free-running rhythm of cell division in Euglena. J Comp Physiol B 155:257–267. doi:10.1007/BF00685221

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki Y, Nisimura T, Numata H (2005) A phase response curve for circannual rhythm in the varied carpet beetle Anthrenus verbasci. J Comp Physiol A 191:883–887. doi:10.1007/s00359-005-0012-6

    Article  CAS  Google Scholar 

  • Miyazaki Y, Nisimura T, Numata H (2006) Phase responses in the circannual rhythm of the varied carpet beetle, Anthrenus verbasci, under naturally changing day length. Zool Sci 23:1031–1037. doi:10.2108/zsj.23.1031

    Article  PubMed  Google Scholar 

  • Nisimura T, Numata H (2001) Endogenous timing mechanism controlling the circannual pupation rhythm of the varied carpet beetle Anthrenus verbasci. J Comp Physiol A 187:433–440. doi:10.1007/s003590100215

    Article  PubMed  CAS  Google Scholar 

  • Pavlidis T (1981) Mathematical models. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4, Biological rhythms. Plenum, New York, pp 41–54

  • Paydarfar D, Eldridge FL, Kiley JP (1986) Resetting of mammalian respiratory rhythm: existence of a phase singularity. Am J Physiol Regul Integr Comp Physiol 250:R721–R727

    CAS  Google Scholar 

  • Peterson EL (1980) Phase-resetting a mosquito circadian oscillator. I. Phase-resetting surface. J Comp Physiol 138:201–211. doi:10.1007/BF00657038

    Article  Google Scholar 

  • Peterson EL (1981) Dynamic response of a circadian pacemaker. II. Recovery from light pulse perturbations. Biol Cybern 40:181–194. doi:10.1007/BF00453368

    Article  Google Scholar 

  • Peterson EL, Calabrese RL (1982) Dynamic analysis of a rhythmic neural circuit in the leech Hirudo medicinalis. J Neurophysiol 47:256–271

    PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1981) Circadian systems: entrainment. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4, Biological rhythms. Plenum, New York, pp 95–124

  • Pittendrigh CS, Minis DH (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 98:261–294. doi:10.1086/282327

    Article  Google Scholar 

  • Saunders DS (1978) An experimental and theoretical analysis of photoperiodic induction in the flesh-fly, Sarcophaga argyrostoma. J Comp Physiol 124:75–95. doi:10.1007/BF00656393

    Article  Google Scholar 

  • Saunders DS (1979) The circadian eclosion rhythm in Sarcophaga argyrostoma: delineation of the responsive period for entrainment. Physiol Entomol 4:263–274

    Google Scholar 

  • Saunders DS (2002) Insect clocks, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Sehgal A (ed) (2004) Molecular biology of circadian rhythms. Wiley Liss, Hoboken

  • Sharma VK, Jensen C, Johnsson A (2001) Phase response curve for the ultradian rhythm of the lateral leaflets of Desmodium gyrans using DC current pulses. Z Naturforsch 56c:77–81

    Google Scholar 

  • Smith PH (1985) Responsiveness to light of the circadian clock controlling eclosion in the blowfly, Lucilia cuprina. Physiol Entomol 10:323–336

    Google Scholar 

  • Soltesz I, Crunelli V (1992) A role for low-frequency, rhythmic synaptic potentials in the synchronization of cat thalamocortical cells. J Physiol (Lond) 457:257–276

    CAS  Google Scholar 

  • Taylor W, Krasnow R, Dunlap JC, Broda H, Hastings JW (1982) Critical pulses of anisomycin drive the circadian oscillator in Gonyaulax towards its singularity. J Comp Physiol 148:11–25. doi:10.1007/BF00688883

    CAS  Google Scholar 

  • Watari Y (2005) Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change of rhythmicity. J Insect Physiol 51:11–16. doi:10.1016/j.jinsphys.2004.09.013

    Article  PubMed  CAS  Google Scholar 

  • Winfree AT (1970) Integrated view of resetting a circadian clock. J Theor Biol 28:327–374. doi:10.1016/0022-5193(70)90075-5

    Article  PubMed  CAS  Google Scholar 

  • Winfree AT (1972a) Slow dark-adaptation in Drosophila’s circadian clock. J Comp Physiol 77:418–434. doi:10.1007/BF00694944

    Article  Google Scholar 

  • Winfree AT (1972b) Oscillatory glycolysis in yeast: the pattern of phase resetting by oxygen. Arch Biochem Biophys 149:388–401. doi:10.1016/0003-9861(72)90337-2

    Article  CAS  Google Scholar 

  • Winfree AT (2000) The geometry of biological time, 2nd edn. Springer, New York

    Google Scholar 

  • Winfree AT, Gordon H (1977) The photosensitivity of a mutant circadian clock. J Comp Physiol 122:87–109. doi:10.1007/BF00611250

    Article  Google Scholar 

  • Young MW (ed) (2005) Methods in enzymology, vol 393, Circadian rhythms. Elsevier, Amsterdam

  • Zucker I (2001) Circannual rhythms: mammals. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology, vol 12, Circadian clocks. Kluwer/Plenum, New York, pp 509–528

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideharu Numata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, Y., Nisimura, T. & Numata, H. Phase resetting and phase singularity of an insect circannual oscillator. J Comp Physiol A 193, 1169–1176 (2007). https://doi.org/10.1007/s00359-007-0270-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0270-6

Keywords

Navigation