Skip to main content
Log in

Arthropod mechanoreceptive hairs: modeling the directionality of the joint

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Stimulus transformation in arthropod mechanoreceptive hairs is dominated by the mechanical properties of both the hair shaft and the hair’s articulation. Here a mathematical model of the hair’s articulation is developed based on simple relationships relevant for every anisotropic articulation. The mechanical behavior regarding deflection under load of a variety of hairs can be described quantitatively by using only two (in the case of double symmetric characteristics) or four parameters (in the case of only one symmetry): (1) joint stiffness S p in the preferred direction of deflection, (2) joint stiffness S t in a plane transversal to the preferred direction, and (3, 4) the values of stiffness S for opposite directions of deflection. The applicability of the model was tested by measuring these stiffnesses S of spider tactile hair joints by deflecting the hairs statically in different directions. For comparison, data in the literature on insect and spider hairs sensitive to air flow were analyzed. The equation presented describes the directional characteristics of a wide range of structurally different cuticular hairs. It can also be used as a mathematical description of the joint mechanics when modeling the mechanics of hairs, for instance, by applying methods such as Finite Element Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

M :

deflecting moment (Nm)

S :

joint rotational stiffness (Nm rad−1)

S p and S t :

joint stiffnesses in the principal plane of movement and transversal to it, respectively

α :

angle of deflection of hair shaft

α m :

measured value of α

φ L :

direction of load application

φ α :

direction of hair deflection

References

  • Albert J, Dechant H-E, Friedrich O, Barth FG (2001) Arthropod touch reception. Spider hair sensilla as rapid touch detectors. J Comp Physiol A 187:303–312

    Article  PubMed  CAS  Google Scholar 

  • Baba Y, Hirota K, Shimozawa T, Yamaguchi T (1995) Differing afferent connections of spiking and nonspiking wind-sensitive local interneurons in the terminal abdominal ganglion of the cricket Gryllus bimaculatus. J Comp Physiol A 176:17–30

    Article  Google Scholar 

  • Barth FG (2002) A spider’s world. Senses and behavior. Springer, Berlin Heidelberg New York, 394 pp

    Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei Keys.). Phil Trans R Soc Lond B 340:445–461

    Article  Google Scholar 

  • Dechant H-E, Rammerstorfer FG, Barth FG (2001) Arthropod touch reception. Stimulus transformation and Finite Element model of spider tactile hair sensilla. J Comp Physiol A 187:313–322

    Article  PubMed  CAS  Google Scholar 

  • Flock A (1965) Transducing mechanisms in lateral line canal organ receptors. In: Cold Spring Harbor Symp Quant Biol XXX, Sensory receptors, 133–146

  • Friedrich OC (1998) Tasthaare bei Spinnen: zur äußeren Morphologie, Biomechanik und Innervierung mechanorezeptiver Haarsensillen. Thesis, Formal- u. Naturwiss Fakultät, Universität Wien

  • Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: Stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res 213:441–463

    PubMed  CAS  Google Scholar 

  • Nicklaus R (1965) Die Erregung einzelner Fadenhaare von Periplaneta americana in Abhängigkeit von der Größe und Richtung der Auslenkung. Z vergl Physiol 50:331–362

    Article  Google Scholar 

  • Reißland A (1978) Electrophysiology of trichobothria in orb-weaving spiders (Agelenidae, Araneae). J Comp Physiol 123:71–84

    Article  Google Scholar 

  • Reißland A, Görner P (1978) Mechanics of trichobothria in orb-weaving spiders (Agelenidae, Araneae). J Comp Physiol 123:59–69

    Article  Google Scholar 

  • Smola U (1970a) Untersuchung zur Topographie, Mechanik und Strömungsmechanik der Sinneshaare auf dem Kopf der Wanderheuschrecke Locusta migratoria. Z vergl Physiol 67: 382–402

    Article  Google Scholar 

  • Smola U (1970b) Rezeptor- und Aktionspotentiale der Sinneshaare auf dem Kopf der Wanderheuschrecke Locusta migratoria. Z vergl Physiol 70:335–348

    Article  Google Scholar 

  • Theiß J (1979) Mechanoreceptive bristles on the head of the blowfly: mechanics and electrophysiology of the macrochaetae. J Comp Physiol 132:55–68

    Article  Google Scholar 

  • Thurm U (1963) Die Beziehungen zwischen mechanischen Reizgrößen und stationären Erregungszuständen bei Borstenfeld–Sensillen von Bienen. Z vergl Physiol 46:351–382

    Article  Google Scholar 

Download references

Acknowledgments

Supported by a grant of the Austrian Science Foundation (FWF P12192-Bio) and the project BioSenSE (DARPA) to FGB .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich G. Barth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dechant, HE., Hößl, B., Rammerstorfer, F.G. et al. Arthropod mechanoreceptive hairs: modeling the directionality of the joint. J Comp Physiol A 192, 1271–1278 (2006). https://doi.org/10.1007/s00359-006-0155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0155-0

Keywords

Navigation