Skip to main content
Log in

Spider joint hair sensilla: adaptation to proprioreceptive stimulation

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Adding to previous efforts towards a better understanding of the remarkable diversity of spider mechanosensitive hair sensilla, this study examines hairs of Cupiennius salei most likely serving a proprioreceptive function. At the tibia–metatarsus joint of all walking legs, there are two opposing groups of hairs ventrally on the tibia (20 hairs) and metatarsus (75 hairs), respectively. These hairs deflect each other when the joint flexes during locomotion, reversibly interlocking by microtrichs on their hair shafts. The torque resisting the hair deflection into the direction of natural stimulation is smaller by up to two powers of ten than that for the other directions. The torsional restoring constant S of the hair suspension is about 10−10 Nm rad−1 in the preferred direction, up to a hair deflection angle of 30° (mean of natural deflection angles). Joint movements were imposed in ranges and at rates measured in walking spiders and sensory action potentials recorded. Within the natural step frequencies (0.3–3 Hz) the rate of action potentials follows the velocity of hair deflection. All findings point to the morphological, mechanical, and physiological adaptedness of the joint hair sensilla to their proprioreceptive stimulation during locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albert JT, Friedrich OC, Dechant H-E, Barth FG (2001) Arthropod touch reception: spider hair sensilla as rapid touch detectors. J Comp Physiol A 187:303–312

    Article  CAS  PubMed  Google Scholar 

  • Barth FG (2002) A spider’s world: senses and behavior. Springer, Berlin

    Book  Google Scholar 

  • Barth FG (2004) Spider mechanoreceptors. Curr Opin Neurobiol 14:415–422

    Article  CAS  PubMed  Google Scholar 

  • Barth FG, Höller A (1999) Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Philos Trans R Soc Lond B 354:183–192

    Article  Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. Chelicerata (Araneae). Z Morphol Tiere 68:343–369

    Article  Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei Keys.). Phil Trans R Soc Lond B 340:445–461

    Article  Google Scholar 

  • Barth FG, Németh SS, Friedrich OC (2004) Arthropod touch reception: structure and mechanics of the basal part of a tactile hair. J Comp Physiol A 190:523–530

    CAS  Google Scholar 

  • Bässler U (1977) Sensory control of leg movement in the stick insect Carausius morosus. Biol Cybern 25:61–72

    Article  PubMed  Google Scholar 

  • Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders. J Comp Physiol A 157:115–147

    Article  Google Scholar 

  • Bohnenberger J, Seyfarth E-A, Barth FG (1983) A versatile feedback controller for electro-mechanical stimulation devices. J Neurosci Methods 9:335–341

    Article  CAS  PubMed  Google Scholar 

  • Dean J, Schmitz J (1992) The two groups of sensilla in the ventral coxal hairplate of Carausius morosus have different roles during walking. Physiol Entomol 17:331–341

    Article  Google Scholar 

  • Dechant H-E (2001) Mechanical properties and finite element simulation of spider tactile hairs. Doctoral thesis, Vienna University of Technology

  • Eckweiler W, Seyfarth E-A (1988) Tactile hairs and the adjustment of body height in wandering spiders: behavior, leg reflexes, and afferent projections in the leg ganglia. J Comp Physiol A 162:611–621

    Article  Google Scholar 

  • Eckweiler W, Hammer K, Seyfarth E-A (1989) Long, smooth hair sensilla on the spider leg coxa: sensory physiology, central projection pattern, and proprioceptive function (Arachnida, Araneida). Zoomorphology 109:97–102

    Article  Google Scholar 

  • Foelix RF (1996) Biology of spiders. Oxford University Press, Oxford

    Google Scholar 

  • Foelix RF, Choms A (1979) Fine structure of a spider joint receptor and associated synapses. Eur J Cell Biol 19:149–159

    CAS  PubMed  Google Scholar 

  • French AS, Wong RKS (1976) The responses of trochanteral hair plate sensilla in the cockroach to periodic and random displacements. Biol Cybern 22:33–38

    Article  Google Scholar 

  • Harris DJ, Mill PJ (1977) Observations on the leg receptors of Ciniflo (Araneida: Dictynidae) I. External mechanoreceptors. J Comp Physiol 119:37–54

    Article  Google Scholar 

  • Humphrey JAC, Barth FG (2008) Medium flow-sensing hairs: biomechanics and models. In: Casas J, Simpson S (eds) Insect mechanics and control. Advances in insect physiology, vol 34. Elsevier, Amsterdam, pp 1–80

    Chapter  Google Scholar 

  • Keyserling E (1877) Über amerikanische Spinnenarten der Unterordnung Citigradae. Verh Zool-Bot Ges Wien 26:609–708

    Google Scholar 

  • Kuenzi F, Burrows M (1995) Central connections of sensory neurones from a hair plate proprioceptor in the thoraco-coxal joint of the locust. J Exp Biol 198:1589–1601

    CAS  PubMed  Google Scholar 

  • McConney ME, Schaber CF, Julian MD, Eberhardt WC, Humphrey JAC, Barth FG, Tsukruk VV (2009) Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei). J R Soc Interface 4:681–694

    Article  Google Scholar 

  • Mill PJ, Harris DJ (1977) Observations on the leg receptors of Ciniflo (Araneida: Dictynidae) III. Proprioceptors. J Comp Physiol 119:63–72

    Article  Google Scholar 

  • Newland PL, Watkins B, Emptage NJ, Nagayama T (1995) The structure, response properties, and development of a hair plate on the mesothoracic leg of the locust. J Exp Biol 198:2397–2404

    CAS  PubMed  Google Scholar 

  • Ogawa H, Kawakami Z, Yamaguchi T (2011) Proprioceptors involved in stinging response of the honeybee, Apis mellifera. J Insect Physiol 57:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Paulk A, Gilbert C (2006) Proprioceptive encoding of head position in the black soldier fly, Hermetia illucens (L.) (Stratiomyidae). J Exp Biol 209:3913–3924

    Article  PubMed  Google Scholar 

  • Poteser M, Pabst MA, Kral K (1998) Proprioceptive contribution to distance estimation by motion parallax in a praying mantid. J Exp Biol 201:1483–1491

    Google Scholar 

  • Pringle JWS (1938) Proprioception in insects III. The function of the hair sensilla at the joints. J Exp Biol 15:467–473

    Google Scholar 

  • Rathmayer W (1967) Elektrophysiologische Untersuchungen an Proprioreceptoren im Bein einer Vogelspinne (Eurypelma hentzi Chamb.). Z vergl Physiol 54:438–454

    Article  Google Scholar 

  • Schaber CF, Gorb SN, Barth FG (2012) Force transformation in spider strain sensors: white light interferometry. J R Soc Interface 9:1254–1264

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmid A (1998) Different functions of different eye types in the spider Cupiennius salei. J Exp Biol 201:221–225

    CAS  PubMed  Google Scholar 

  • Seyfarth E-A (1985) Spider proprioception: receptors, reflexes and control of locomotion. In: Barth FG (ed) Neurobiology of arachnids. Springer, New York, pp 230–248

    Chapter  Google Scholar 

  • Seyfarth E-A (2002) Tactile body raising: neuronal correlates of a `simple´ behavior in spiders. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 19–32

    Google Scholar 

  • Seyfarth E-A, Pflüger HJ (1984) Proprioceptor distribution and control of a muscle reflex in the tibia of spider legs. J Neurobiol 15:365–374

    Article  CAS  PubMed  Google Scholar 

  • Seyfarth E-A, Gnatzy W, Hammer K (1990) Coxal hair plates in spiders: physiology, fine structure, and specific central projections. J Comp Physiol A 166:633–642

    Article  Google Scholar 

  • Speck-Hergenröder J, Barth FG (1988) Vibration sensitive hairs on the spider leg. Experientia (Basel) 44:13–14

    Article  Google Scholar 

  • Vedel JP (1986) Morphology and physiology of a hair plate sensory organ located on the antenna of the rock lobster Palinurus vulgaris. J Neurobiol 17:65–76

    Article  CAS  PubMed  Google Scholar 

  • Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250

    Article  Google Scholar 

  • Wong RKS, Pearson KG (1976) Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J Exp Biol 64:233–249

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Partially supported by a grant of the Austrian Science Fund (FWF, P12192-BIO) to F.G.B. The experiments comply with the Principles of Animal Care and the current laws of Austria where they were carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens F. Schaber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaber, C.F., Barth, F.G. Spider joint hair sensilla: adaptation to proprioreceptive stimulation. J Comp Physiol A 201, 235–248 (2015). https://doi.org/10.1007/s00359-014-0965-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0965-4

Keywords

Navigation