Skip to main content
Log in

Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Weakly electric fish orient at night by employing active electrolocation. South American and African species emit electric signals and perceive the consequences of these emissions with epidermal electroreceptors. Objects are detected by analyzing the electric images which they project onto the animal’s electroreceptive skin surface. Electric images depend on size, distance, shape, and material of objects and on the morphology of the electric organ and the fish’s body. It is proposed that the mormyrid Gnathonemus petersii possesses two electroreceptive “foveae” at its Schnauzenorgan and its nasal region, both of which resemble the visual fovea in the retina of many animals in design, function, and behavioral use. Behavioral experiments have shown that G. petersii can determine the resistive and capacitive components of an object’s complex impedance in order to identify prey items during foraging. In addition, fish can measure the distance and three-dimensional shape of objects. In order to determine object properties during active electrolocation, the fish have to determine at least four parameters of the local signal within an object’s electric image: peak amplitude, maximal slope, image width, and waveform distortions. A crucial parameter is the object distance, which is essential for unambiguous evaluation of object properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ELL:

Electrosensory lateral line lobe

EO:

Electric organ

EOCD:

Electric organ corollary discharge

EOD:

Electric organ discharge

S+:

Positive stimulus

S−:

Negative stimulus

References

  • Aguilera PA, Caputi AA (2003) Electroreception in G. carapo: detection of changes in waveform of the electrosensory signals. J Exp Biol 206:989–998

    Article  PubMed  Google Scholar 

  • Aguilera PA, Castelló ME, Caputi AA (2001) Electroreception in Gymnotus carapo: differences between self-generated and conspecific-generated signal carriers. J Exp Biol 204:185–198

    PubMed  CAS  Google Scholar 

  • Assad C, Rasnow B, Stoddard PK (1999) Electric organ discharges and electric images during electrolocation. J Exp Biol 202:1185–1193

    PubMed  CAS  Google Scholar 

  • Bega G, Lev-Toaff AS, O’Kane P, Becker E Jr, Kurtz AB (2003) Three-dimensional ultrasonography in gynecology: technical aspects and clinical applications. J Ultrasound Med 22:1249–1269

    PubMed  Google Scholar 

  • Bell CC (1982) Properties of a modifiable efference copy in electric fish. J Neurophysiol 47:1043–1056

    PubMed  CAS  Google Scholar 

  • Bell CC (1990) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers. J Neurophysiol 63:319–332

    PubMed  CAS  Google Scholar 

  • Bell CC, Zakon H, Finger TE (1989) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology. J Comp Neurol 286:391–407

    Article  PubMed  CAS  Google Scholar 

  • Bennett MVL, Steinbach AB (1969) Influence of electric organ control system on electrosensory afferent pathways in mormyrids. In: Llinas R (ed) Neurobiology of cerebellar evolution and development, American Medical Association, Chicago, pp 207–214

    Google Scholar 

  • Bleckmann H, Schmitz H, von der Emde G (2004) Nature as a model for technical sensors. J Comp Physiol A 190:971–981

    Article  CAS  Google Scholar 

  • Blough PM (2001) Cognitive strategies and foraging in pigeons. In: Cook RG (ed) Avian visual cognition (on-line), Available at www.pigeon.psy.tufts.edu/avc/pblough/

  • Budelli R, Caputi AA (2000) The electric image in weakly electric fish: perception of objects of complex impedance. J Exp Biol 203:481–492

    PubMed  CAS  Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46

    Article  Google Scholar 

  • Caputi AA (1999) The electric organ discharge of pulse gymnotiforms: the transformation of a simple impulse into a complex spatio-temporal electromotor pattern. J Exp Biol 202:1229–1241

    PubMed  Google Scholar 

  • Caputi AA, Budelli R (2006) Peripheral electrosensory imaging by weekly electric fish. J Comp Physiol A (this issue). DOI 10.1007/s00359-006-0100-2

  • Caputi A, Macadar O, Trujillo-Cenez O (1989) Waveform generation of the electric organ discharge in Gymnotus carapo: III. Analysis of the fish body as an electric source. J Comp Physiol A 165:361–370

    Article  Google Scholar 

  • Caputi AA, Budelli R, Grant K, Bell CC (1998) The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. J Exp Biol 201:2115–2128

    PubMed  CAS  Google Scholar 

  • Caputi AA, Castelló ME, Aguilera PA, Trujillo-Cenoz O (2002) Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic. J Physiol (Paris) 96:493–505

    Article  Google Scholar 

  • Castelló ME, Caputi AA, Trujillo-Cenóz O (1998) Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo. J Comp Neurol 401:549–563

    Article  PubMed  Google Scholar 

  • Castelló ME, Aguilera PA, Trujillo-Cenoz O, Caputi AA (2000) Electroreception in Gymnotus carapo: pre-receptional mechanisms and distribution of electroreceptor types. J Exp Biol 203:3279–3287

    PubMed  Google Scholar 

  • Finger TE, Bell CC, Carr CE (1986) Comparison among electroreceptive teleosts: why are electrosensory systems so similar? In: Bullock TH, Heiligenberg W (eds) Electroreception, Wiley, New York, pp 465–481

    Google Scholar 

  • Friedman MB (1975) How birds use their eyes. In: Wright P, Caryl PG, Vowles DM (eds) Neural and endocrine aspects of behaviour in birds, Elsevier, Oxford, pp 181–204

    Google Scholar 

  • Galifret Y (1968) Les diverse aires fonctionelles de la retine du pigeon. Z Zellforsch 86:535–545

    Article  PubMed  CAS  Google Scholar 

  • Garner WR (1974) The processing of information and structure. Wiley, London

    Google Scholar 

  • Harder W (1968) Die Beziehungen zwischen Elektrorezeptoren, elektrischen Organen, Seitenlinienorganen und Nervensystem bei den Mormyridae (Teleostei, Pisces). Z Vergl Physiol 59:272–318

    Google Scholar 

  • Harder W, Schief A, Uhlemann H (1967) Zur Empfindlichkeit des schwachelektrischen Fisches Gnathonemus petersii (Mormyriformes; Teleostei) gegenüber elektrischen Feldern. Z Vergl Physiol 54:89–108

    Article  Google Scholar 

  • Harley HE, Putman E, Roitblat HL (2003) Bottlenose dolphins perceive object features through echolocation. Nature 424:667–668

    Article  PubMed  CAS  Google Scholar 

  • Heiligenberg W (1973) Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei). J Comp Physiol 87:137–164

    Article  Google Scholar 

  • Heiligenberg W (1975) Theoretical and experimental approaches to spatial aspects of electrolocation. J Comp Physiol 103:247–272

    Article  Google Scholar 

  • Heiligenberg W (1977) Principles of electrolocation and jamming avoidance in electric fish: a neuroethological approach. Springer, Berlin Heidelberg New York, pp 1–85

    Google Scholar 

  • Heiligenberg W (1993) Electrosensation. In: Evans DH (ed) The physiology of fishes, CRC Press, Boca Raton, pp 137–160

    Google Scholar 

  • Hopkins CD (1986) Temporal structures of non-propagated electric communication signals. Brain Behav Evol 28:43–59

    Article  PubMed  CAS  Google Scholar 

  • Horne JK, Clay CS (1998) Sonar systems and aquatic organisms: matching equipment and model parameters. Can J Fish Aquat Sci 55:1296–1306

    Article  Google Scholar 

  • Jager R, Zeigler HP (1991) Visual field organization and peck localization in the pigeon (Columba livia). Behav Brain Res 45:65–69

    Article  PubMed  CAS  Google Scholar 

  • Land MF (1999) Motion and vision: why animals move their eyes. J Comp Physiol A 185:341–352

    Article  PubMed  CAS  Google Scholar 

  • Lissmann HW (1951) Continuous electric signals from the tail of a fish, Gymnarchus niloticus Cuv. Nature 167:201–202

    Article  PubMed  CAS  Google Scholar 

  • Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191

    Google Scholar 

  • Lissmann HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:451–486

    Google Scholar 

  • Meyer JH (1982) Behavioral responses of weakly electric fish to complex impedances. J Comp Physiol A145:459–470

    Article  Google Scholar 

  • Moss CF, Sinha SR (2003) Neurobiology of echolocation in bats. Curr Opin Neurobiol 13:751–758

    Article  PubMed  CAS  Google Scholar 

  • Nelson ME (2005) Target detection, image analysis, and modeling. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, Berlin Heidelberg New York, pp 290–317

    Chapter  Google Scholar 

  • Nelson ME, Maciver MA (1999) Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. J Exp Biol 202:1195–1203

    PubMed  CAS  Google Scholar 

  • Nelson ME, MacIver MA (2006) Sensory acquisition in active sensing systems. J Comp Physiol A (this issue). DOI 10.1007/s00359-006-0099-4

  • Newell FN, Ernst MO, Tjan BS, Bülthoff HH (2001) Viewpoint dependence in visual and haptic object recognition. Psychol Sci 12:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pack AA, Herman LM, Hoffmann-Kuhnt M (2004) Dolphin echolocation shape perception: from sound to object. In: Vater M (ed) Echolocation in bats and dolphins, University of Chicago Press, Chicago, pp 288–308

    Google Scholar 

  • Quinet P (1971) Etude systematique des organes sensoriels de la peau des mormyriformes (Pisces, Mormyriformes). Ann Mus R Afr Cent Tervuren (Belg) Ser 8 190:1–97

    Google Scholar 

  • Rasnow B (1996) The effects of simple objects on the electric field of Apteronotus. J Comp Physiol A 178:397–411

    Google Scholar 

  • Rother D, Migliaro A, Canetti R, Gomez L, Budelli R (2003) Electric images of two low resistance objects in weakly electric fish. Biosystems 71:171–179

    Article  Google Scholar 

  • Sawtell NB, Mohr C, Bell CC (2005) Recurrent feedback in the mormyrid electrosensory system: cells of the preeminential and lateral toral nuclei. J Neurophysiol 93:2090–2103

    Article  PubMed  Google Scholar 

  • Schwan HP (1963) Determination of biological impedances. In: Nastuk WL (ed) Physical techniques in biological research, Academic, New York, pp 323–407

    Google Scholar 

  • Schwarz S (2000) Gnathonemus petersii: three-dimensional object shape detection and the geometry of the self-produced electric field. PhD thesis, University of Bonn, Bonn

  • Schwarz S, von der Emde G (2001) Distance discrimination during active electrolocation in the weakly electric fish Gnathonemus petersii. J Comp Physiol A 186:1185–1197

    Article  CAS  Google Scholar 

  • Schwarz S, Hofmann MH, von der Emde G (2001) Weakly electric fish as a natural model for industrial sensors. BIONA-Report 15:142–157

    Google Scholar 

  • Toerring MJ, Moller P (1984) Locomotor and electric displays associated with electrolocation during exploratory behavior in mormyrid fish. Behav Brain Res 12:291–306

    Article  PubMed  CAS  Google Scholar 

  • von der Emde G (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167:413–421

    Google Scholar 

  • von der Emde G (1992) Electrolocation of capacitive objects in four species of pulse-type weakly electric fish. II. Electric signaling behavior. Ethology 92:177–192

    Article  Google Scholar 

  • von der Emde G (1998a) Capacitance detection in the wave-type electric fish Eigenmannia during active electrolocation. J Comp Physiol A 182:217–224

    Article  Google Scholar 

  • von der Emde G (1998b) Electroreception. In: Evans DH (ed) The physiology of fishes, CRC Press, Boca Raton, pp 313–343

    Google Scholar 

  • von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202:1205–1215

    PubMed  Google Scholar 

  • von der Emde G (2004) Distance and shape: perception of the 3-dimensional world by weakly electric fish. J Physiol (Paris) 98:67–80

    Google Scholar 

  • von der Emde G, Bleckmann H (1992) Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. J Comp Physiol A 171:683–694

    Article  Google Scholar 

  • von der Emde G, Bleckmann H (1997) Waveform tuning of electroreceptor cells in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 181:511–524

    Article  Google Scholar 

  • von der Emde G, Bleckmann H (1998) Finding food: senses involved in foraging for insect larvae in the electric fish, Gnathonemus petersii. J Exp Biol 201:969–980

    PubMed  Google Scholar 

  • von der Emde G, Ringer T (1992) Electrolocation of capacitive objects in four species of pulse-type weakly electric fish. I. Discrimination performance. Ethology 91:326–338

    Article  Google Scholar 

  • von der Emde G, Ronacher B (1994) Perception of electric properties of objects in electrolocating weakly electric fish: two-dimensional similarity scaling reveals a city-block metric. J Comp Physiol A 175:801–812

    Google Scholar 

  • von der Emde G, Schwarz S (2001) How the electric fish brain controls the production and analysis of electric signals during active electrolocation. Zoology 103:112–124

    Google Scholar 

  • von der Emde G, Schwarz S (2002) Imaging of Objects through active electrolocation in Gnathonemus petersii. J Physiol (Paris) 96:431–444

    Article  Google Scholar 

  • von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894

    Article  PubMed  CAS  Google Scholar 

  • Zakon H H (1987) The electroreceptors: diversity in structure and function. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals, Springer, Berlin Heidelberg New York, pp 813–850

    Google Scholar 

Download references

Acknowledgements

The work of the author was funded by several grants of the German Research Foundation (DFG) (Em43/1-1–Em43/11-1). I thank S. Fetz, M. Hollmann, and A. Padberg for sharing their unpublished behavioral and anatomical results. All experiments conducted in this study comply with the “Principles of animal care”, publication No. 86-23, revised 1985, of the National Institute of Health, and with the current laws of Germany and the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. von der Emde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von der Emde, G. Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish . J Comp Physiol A 192, 601–612 (2006). https://doi.org/10.1007/s00359-006-0096-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0096-7

Keywords

Navigation