Skip to main content

Advertisement

Log in

Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Pocket gophers (Thomomys bottae) are rodents that spend much of their lives in near-lightless subterranean burrows. The visual adaptations associated with this extreme environment were investigated by making anatomical observations of retinal organization and by recording retinal responses to photic stimulation. The size of the eye is within the normal range for rodents, the lens transmits light well down into the ultraviolet, and the retina conforms to the normal mammalian plan. Electroretinogram recording revealed the presence of three types of photopigments, a rod pigment with a spectral peak of about 495 nm and two types of cone pigment with respective peak values of about 367 nm (UV) and 505 nm (medium-wavelength sensitive). Both in terms of responsivity to lights varying in temporal frequency and in response recovery following intense light adaptation, the cone responses of the pocket gopher are similar to those of other rodents. Labeling experiments indicate an abundance of cones that reach densities in excess of 30,000 mm−2. Cones containing UV opsin are found throughout the retina, but those containing medium-wavelength sensitive opsin are mostly restricted to the dorsal retina where coexpression of the two photopigments is apparently the rule. Rod densities are lower than those typical for nocturnal mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ERG:

Electroretinogram

L:

Long-wavelength sensitive

M:

Medium-wavelength sensitive

S:

Short-wavelength sensitive

UV:

Ultraviolet-wavelength sensitive

ONL:

Outer nuclear layer

References

  • Adkins RM, Walton AH, Honeycutt RL (2003) Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol Phylogen Evol 26:409–420

    Article  CAS  Google Scholar 

  • Ahnelt PK, Kolb H (2000) The mammalian photoreceptor mosaic-adaptive design. Prog Retinal Eye Res 19:711–770

    Article  CAS  Google Scholar 

  • Applebury ML, Antoch MP, Baxter LC, Chun LLY, Falk JD, Farhangfar F, Kage K, Kryzystolik ML, Lyass LA, Robbins JT (2000) The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27:513–523

    CAS  PubMed  Google Scholar 

  • Arrese CA, Hart NS, Thomas N, Beazley LD, Shand J (2002) Trichromacy in Australian marsupials. Curr Biol 12:657–660

    Article  CAS  PubMed  Google Scholar 

  • Blanks J, Johnson LV (1984) Specific binding of peanut lectin to a class of retinal photoreceptor cells: a species comparison. Invest Ophthalmol Visual Sci 25:546–557

    CAS  Google Scholar 

  • Burda H, Bruns V, Muller M (1989) Sensory adaptations in subterranean mammals. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley, New York, pp 49–69

    Google Scholar 

  • Chavez AE, Bozinovic F, Peichl L, Palacios AG (2003) Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus Octodon (Rodentia): implications for visual ecology. Invest Ophthalmol Visual Sci 44:2290–2296

    Article  Google Scholar 

  • Chiu MI, Zack DJ, Wang Y, Nathans J (1994) Murine and bovine blue cone pigment genes: cloning and characterization of the S family of visual pigments. Genomics 21:440–443

    Article  CAS  PubMed  Google Scholar 

  • David-Gray ZK, Bellingham J, Munoz M, Avivi A, Nevo E, Foster RG (2002) Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). Eur Neurosci 15:1186–1194

    Article  Google Scholar 

  • Fasick JI, Cronin TW, Hunt DM, Robinson PR (1998) The visual pigments of the bottlenose dolphin (Tursiops truncatus). Visual Neurosci 15:643–651

    Article  CAS  Google Scholar 

  • Feldman JL, Phillips CJ (1984) Comparative retinal pigment epithelium and photoreceptor ultrastructure in nocturnal and fossorial rodents: the eastern woodrat, Neotoma florida and the plains pocket gopher, Geomys bursarius. J Mammal 65:231–245

    Google Scholar 

  • Gettinger RD (1984) A field study of activity patterns of Thomomys bottae. J Mammalogy 65:76–84

    Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Visual Neurosci 17:509–528

    Article  CAS  Google Scholar 

  • Hallett PE (1987) The scale of the visual pathways of mouse and rat. Biol Cybern 57:275–286

    Article  CAS  PubMed  Google Scholar 

  • Hemmi JM, Grunert U (1999) Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii). Visual Neurosci 16:291–302

    Article  CAS  Google Scholar 

  • Howland HC, Merola S, Basarab JR (2004) The allometry and scaling of the size of vertebrate eyes. Vision Res 44:2043–2065

    Article  PubMed  Google Scholar 

  • Hunt DM, Wilkie SE, Bowmaker JK, Poopalasundaram S (2001) Vision in the ultraviolet. Cell Mol Life Sci 58:1583–1598

    CAS  PubMed  Google Scholar 

  • Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev 68:413–471

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH, Rowe MP (2004) Evolution of vertebrate colour vision. Clin Exp Optom 87(4–5):206–216

  • Jacobs GH, Neitz J, Deegan II JF (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655–656

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH, Neitz J, Krogh K (1996a) Electroretinogram flicker photometry and its applications. J Opt Soc Am A 13:641–648

    CAS  Google Scholar 

  • Jacobs GH, Neitz M, Neitz J (1996b) Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc R Soc Lond B 263:705–710

    CAS  PubMed  Google Scholar 

  • Jacobs GH, Fenwick JC, Calderone JB, Deeb SS (1999) Human cone pigment expressed in transgenic mice yields altered vision. J Neurosci 19:3258–3265

    CAS  PubMed  Google Scholar 

  • Jacobs GH, Calderone JB, Fenwick JA, Krogh K, Williams GA (2003) Visual adaptations in a diurnal rodent, Octodon degus. J Comp Physiol A 189:347–361

    CAS  Google Scholar 

  • Jeon C-J, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946

    CAS  PubMed  Google Scholar 

  • Kawamura S, Kubotera N (2004) Ancestral loss of short wave-sensitive cone visual pigment in lorsiform prosiminans, contrasting with its strict conservation in other prosimians. J Mol Evol 58(3):314–321

    Article  CAS  PubMed  Google Scholar 

  • Kryger Z, Galli-Resta L, Jacobs GH, Reese BE (1998) The topography of rod and cone photoreceptors in the retina of the ground squirrel. Visual Neurosci 15:685–691

    Article  CAS  Google Scholar 

  • Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11:475–480

    Article  CAS  PubMed  Google Scholar 

  • Levenson DH, Dizon A (2003) Genetic evidence for the ancestral loss of SWS cone pigments in mysticetee and odontocete cetaceans. Proc R Soc Lond B 270:673–679

    Article  CAS  PubMed  Google Scholar 

  • Macdonald D (ed) (2001) The new encyclopedia of mammals. Oxford University Press, Oxford

    Google Scholar 

  • Nowak RM (1991) Walker’s mammals of the world. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Parry JWL, Bowmaker JK (2002) Visual pigment coexpression in guinea pig cones: a microspectrophotometric study. Invest Ophthalmol Visual Sci 43:1662–1665

    Google Scholar 

  • Paupoo AAV, Mahroo OAR, Friedburg C, Lamb TD (2000) Human cone photoreceptor responses measured by the electroretinogram a-wave during and after exposure to intense illumination. J Physiol 529:469–482

    Article  CAS  PubMed  Google Scholar 

  • Peichl L, Behrmann G, Kroger RHH (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci 13:1520–1528

    Article  CAS  PubMed  Google Scholar 

  • Reichman OJ, Seabloom EW (2002) The role of pocket gophers as subterranean ecosystem engineers. Trends Ecol Evol 17:44–49

    Article  Google Scholar 

  • Rohlich P, van Veen T, Szel A (1994) Two different visual pigments in one retinal cone cell. Neuron 13:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Sanyal S, Jansen HG, de Grip WJ, Nevo E, de Jong WW (1990) The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? Invest Ophthalmol Visual Sci 31:1398–1404

    CAS  Google Scholar 

  • Shi Y, Yokoyama S (2003) Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A 100:8308–8333

    Article  CAS  PubMed  Google Scholar 

  • Smith MF (1998) Phylogenetic relationships and geographic structure in pocket gophers in the genus Thomomys. Mol Phylogenet Evol 9:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sterling P (2004) How retinal circuits optimize the transfer of visual information. In: Chalupa LM, Werner JS (eds) The visual neurosciences, vol 1. MIT Press, Boston, pp 234–259

  • Szel A, Lukats A, Fekete T, Szepessy Z, Rohlich P (2000) Photoreceptor distribution in the retinas of subprimate mammals. J Opt Soc Am A 17:568–579

    CAS  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills

    Google Scholar 

  • Williams GA, Calderone JB, Jacobs GH (2003) Photoreceptors and photopigments in a fossorial rodent, the Pocket gopher (Thomomys bottae). Invest Ophthalmol Visual Sci 44:4163 (E-Abstract)

    Article  Google Scholar 

Download references

Acknowledgements

We thank John Fenwick for help with the anatomy and Kris Krogh for making the lens measurements. All animal care and experimental procedures were in accordance with institutional care and use guidelines and with the Principles of animal care, publication No. 86–23, revised 1985 of the National Institutes of Health. This research was facilitated by a grant from the National Eye Institute (EY002052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, G.A., Calderone, J.B. & Jacobs, G.H. Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae). J Comp Physiol A 191, 125–134 (2005). https://doi.org/10.1007/s00359-004-0578-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0578-4

Keywords

Navigation