Skip to main content
Log in

Characterization of tracers for two-color laser-induced fluorescence liquid-phase temperature imaging in sprays

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The variation of the fluorescence spectral signature of tracer solutions with temperature enables temperature imaging measurements in liquids and sprays by simultaneously recording and rationing the fluorescence intensity detected in two separate wavelength channels. In this work, we recorded fluorescence spectra of ethanol-based solutions of nine laser dyes used as tracers (PTP, stilbene 1, coumarin 152, coumarin 153, rhodamine B, rhodamine 101, pyrromethene 597, DCM, and pyridine 1) after excitation at either 266, 355, or 532 nm (depending on the dye) for temperatures between 298 and 348 K (close to the boiling point of the solvent), and for concentrations (depending on dye) around 10 mg/l (i.e., ~ 10–5 mol/l). The influence of signal self-absorption was investigated for the tracers best suited for thermometry, rhodamine B and coumarin 152, where the latter is almost unaffected due to its large Stokes shift. In thin-film (100 µm) cells, possible concentration effects on the fluorescence spectrum were investigated in the absence of signal self-absorption in the 0.1–10 and 0.5–50 mg/l range for rhodamine B and coumarin 152, respectively. Sensitivities of the two-color intensity ratios were determined for two selected color detection channels for each tracer characterized by their center wavelength and spectral half width and conditioned on averaged intensities of larger than 10% of the spectral peak of their respective fluorescence spectrum. The use of coumarin 152 that showed the overall best spectroscopic properties was demonstrated for temperature imaging in a burning ethanol spray.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

Financial support by the German Research Foundation (DFG) within PP 1980 “Nanoparticle synthesis in spray flames” under contract 374463258 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Michael Prenting.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prenting, M.M., Bin Dzulfida, M.I., Dreier, T. et al. Characterization of tracers for two-color laser-induced fluorescence liquid-phase temperature imaging in sprays. Exp Fluids 61, 77 (2020). https://doi.org/10.1007/s00348-020-2909-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-2909-9

Navigation