Skip to main content

Advertisement

Log in

Blade tip vortex measurements on actively twisted rotor blades

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Active rotor control concepts, such as active twist actuation, have the potential to effectively reduce the noise and vibrations of helicopter rotors. The present study focuses on the experimental investigation of active twist for the reduction of blade–vortex interaction (BVI) effects on a model rotor. Results of a large-scale smart-twisting active rotor test under hover conditions are described. This test investigated the effects of individual blade twist control on the blade tip vortices. The rotor blades were actuated with peak torsion amplitudes of up to \(2^\circ\) and harmonic frequencies of 1–5/rev with different phase angles. Time-resolved stereoscopic particle image velocimetry was carried out to study the effects of active twist on the strength and trajectories of the tip vortices between \(\psi _\text {v}= 3.6^\circ\) and \(45.7^\circ\) of vortex age. The analysis of the vortex trajectories revealed that the 1/rev active twist actuation mainly caused a vertical deflection of the blade tip and the corresponding vortex trajectories of up to \(1.3\%\) of the rotor radius R above and \(-1\%R\) below the unactuated condition. An actuation with frequencies of 2 and 3/rev significantly affected the shapes of the vortex trajectories and caused negative vertical displacements of the vortices relative to the unactuated case of up to \(2\%R\) within the first \(35^\circ\) of wake age. The 2 and 3/rev actuation also had the most significant effects on the vortex strength and altered the initial peak swirl velocity by up to \(-34\) and \(+31\%\) relative to the unactuated value. The present aerodynamic investigation reveals a high control authority of the active twist actuation on the strength and trajectories of the trailing blade tip vortices. The magnitude of the evoked changes indicates that the active twist actuation constitutes an effective measure for the mitigation of BVI-induced noise on helicopters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Average diameters according to the probability density function (PDF) of the distributions of length \(0.21\,\upmu \text {m}\) and volume \(0.77\,\upmu \text {m}\).

Abbreviations

a :

Velocity fit parameter

c :

Blade chord length, \(\text {m}\)

\(C_\text {T}\) :

Thrust coefficient, \(C_\text {T}=T/(\rho \pi \Omega ^2 R^4)\)

i :

Blade index

k :

Control frequency

\(L_\text {m}\) :

Measurement resolution, \(\text {m}\)

\(M_\text {tip}\) :

Tip Mach number

n :

Vatistas swirl shape parameter

\(N_\text {b}\) :

Number of blades

r :

Radial coordinate, \(\text {m}\)

\(r_\text {c}\) :

Vortex core radius, \(\text {m}\)

\(r_\text {void}\) :

Particle void radius, \(\text {m}\)

R :

Rotor radius, \(\text {m}\)

t :

Time, \(\text {s}\)

\(t_\text {0}\) :

Time of quarter chord passing through light sheet, \(\text {s}\)

T :

Rotor thrust, \(\text {N}\)

uv :

Velocity components, \(\text {m}/\text {s}\)

\(U_n\) :

Maximum control amplitude, \(\text {V}\)

\(U_i\) :

Control voltage signal, \(\text {V}\)

\(V_{\text {tip}}\) :

Blade tip speed, \(V_{\text {tip}}=\Omega R\), \(\text {m}/\text {s}\)

\(V_{z}\) :

Vortex induced axial velocity, \(\text {m}/\text {s}\)

\(V_{\theta }\) :

Vortex induced swirl velocity, \(\text {m}/\text {s}\)

xyz :

Coordinates in PIV image plane, \(\text {m}\)

\(\alpha _{\text {e}}\) :

Effective angle of attack, \(\text {deg}\)

\(\Gamma _\text {v}\) :

Vortex circulation, \(\text {m}^2/\text {s}\)

\(\rho\) :

Air density, \(\text {kg}/\text {m}^3\)

\(\sigma\) :

Rotor solidity, \(\sigma =N_\text {b} c /(\pi R)\)

\(\varphi\) :

Control phase, \(\text {rad}\)

\(\psi _\text {v}\) :

Vortex age, \(\text {deg}\)

\(\Psi\) :

Azimuth, \(\Psi =\Omega t\), \(\text {deg}\)

\(\omega _z\) :

Vorticity normal to xy plane, \(1/\text {s}\)

\(\Omega\) :

Rotor rotational frequency, \(\text {rad}/\text {s}\)

References

  • Bauknecht A (2016) Characterization of blade-tip vortices on large-scale rotors. Dissertation, Leibniz Universität Hannover

  • Bauknecht A, Ewers B, Schneider O, Raffel M (2015) Aerodynamic results from the STAR hover test: an examination of active twist actuation. In: Proceedings of 41st European Rotorcraft Forum, Munich, Germany

  • Bhagwat MJ, Leishman JG (2000) Correlation of helicopter rotor tip vortex measurements. AIAA J 38(2):301–308. doi:10.2514/2.957

    Article  Google Scholar 

  • Bhagwat MJ, Leishman JG (2002) Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations. In: Proceedings of American Helicopter Society 58th Annual Forum, Montreal, Canada

  • Bhagwat MJ, Ramasamy M (2012) Effect of tip vortex aperiodicity on measurement uncertainty. Exp Fluids 53(5):1191–1202. doi:10.1007/s00348-012-1348-7

    Article  Google Scholar 

  • Brocklehurst A, Pike AC (1994) Reduction of BVI noise using a vane tip. In: Proceedings of American Helicopter Society Aeromechanics Specialists Conference, San Francisco, CA, USA

  • Coyne A, Bhagwat M, Leishman J (1997) Investigation into the rollup and diffusion of rotor tip vortices using laser doppler velocimetry. In: Proceedings of American Helicopter Society 53rd Annual Forum, Virginia Beach, VA

  • Gelhaar B, Junker B, Wagner W (1993) DLR rotor teststand measures unsteady rotor aerodynamic data. In: Proceedings of 19th European Rotorcraft Forum, Cernobbio, Italy

  • George AR (1978) Helicopter noise: state-of-the-art. J Aircraft 15(11):707–715. doi:10.2514/3.58436

    Article  MathSciNet  Google Scholar 

  • Grant I (1997) Particle image velocimetry: a review. Proc Inst Mech Eng 211(Part C):55–76

    Google Scholar 

  • Hardin JC, Lamkin SL (1987) Concepts for reduction of blade/vortex interaction noise. J Aircraft 24(2):120–125. doi:10.2514/3.45428

    Article  Google Scholar 

  • Hoffmann F, Schneider O, van der Wall BG, Keimer R, Kalow S, Bauknecht A, Ewers B, Pengel K, Feenstra G (2014) STAR hovering test—proof of functionality and representative results. In: Proceedings of 40th European Rotorcraft Forum, Southampton, UK

  • Hoffmann F, Keimer R, Riemenschneider J (2016) Structural modeling and validation of an active twist model rotor blade. CEAS Aeronaut J 7(1):43–55. doi:10.1007/s13272-015-0173-0

    Article  Google Scholar 

  • Kube R, Splettstoesser WR, Wagner W, Seelhorst U, Yu YH, Tung C, Beaumier P, Prieur J, Rahier G, Spiegel P, Boutier A, Brooks TF, Burley CL, Boyd DD, Mercker E, Pengel K (1996) HHC aeroacoustic rotor tests in the German Dutch Wind Tunnel: improving physical understanding and prediction codes. In: Proceedings of American Helicopter Society 52nd Annual Forum, Washington D.C., USA

  • Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Lowson MV (1992) Progress towards quieter civil helicopters. Aeronaut J 96:209–223. doi:10.1017/S0001924000050508

    Google Scholar 

  • Marcolini MA, Booth ER, Tadghighi H, Hassan AA, Smith CD, Becker LE (1995) Control of BVI noise using an active trailing edge flap. In: Proceedings of American Helicopter Society Vertical Lift Aircraft Design Conference, San Francisco, CA, USA

  • Milluzzo JI, Leishman JG (2016) Vortical sheet behavior in the wake of a rotor in ground effect. AIAA J 55(1): doi:10.2514/1.J054498

  • Oseen CW (1911) Über Wirbelbewegung in einer reibenden Flüssigkeit. Arkiv för Matematik Astronomi och Fysik 7(14):14–21

    MATH  Google Scholar 

  • Ramasamy M, Leishman JG (2006) A generalized model for transitional blade tip vortices. J Am Helicopter Soc 51(1):92–103. doi:10.4050/1.3092881

    Article  Google Scholar 

  • Ramasamy M, Leishman JG (2007) Benchmarking particle image velocimetry with laser doppler velocimetry for rotor wake measurements. AIAA J 45(11):2622–2633. doi:10.2514/1.28130

    Article  Google Scholar 

  • Ramasamy M, Johnson B, Huismann T, Leishman JG (2009) Digital particle image velocimetry measurements of tip vortex characteristics using an improved aperiodicity correction. J Am Helicopter Soc 54:1–13. doi:10.4050/JAHS.54.012004

    Google Scholar 

  • Richard H, Bosbach J, Henning A, Raffel M, van der Wall BG (2006) 2C and 3C PIV measurements on a rotor in hover condition. In: Proceedings of 13th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Riemenschneider J, Wierach P, Opitz S, Hoffmann F (2007) Testing and simulation of an active twist rotor blade. In: Proceedings of adaptronic congress, Göttingen, Germany

  • Squire HB (1965) The growth of a vortex in turbulent flow. Aeronaut Q 16:302–306. doi:10.1017/S0001925900003516

    Article  Google Scholar 

  • Vatistas GH, Kozel V, Mih WC (1991) A simpler model for concentrated vortices. Exp Fluids 11(1):73–76. doi:10.1007/BF00198434

    Article  Google Scholar 

  • van der Wall BG (2000) The effect of HHC on the vortex convection in the wake of a helicopter rotor. Aerosp Sci Technol 4(5):321–336. doi:10.1016/S1270-9638(00)00141-3

    Article  MATH  Google Scholar 

  • van der Wall BG, Richard H (2006) Analysis methodology for 3C-PIV data of rotary wing vortices. Exp Fluids 40:798–812. doi:10.1007/s00348-006-0117-x

    Article  Google Scholar 

  • van der Wall BG, Richard H (2008) Hover tip vortex structure test (HOTIS)—test documentation and representative results. Tech. rep, DLR, Brunswick, Germany

  • White RP Jr (1980) The status of rotor noise technology. J Am Helicopter Soc 25(1):22–29. doi:10.4050/JAHS.25.22

    Google Scholar 

  • Wieneke B, Pfeiffer K (2010) Adaptive PIV with variable interrogation window size and shape. In: Proceedings of 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Wierach P, Riemenschneider J, Optiz S, Hoffmann F (2007) Experimental investigation of an active twist model rotor blade under centrifugal loads. In: Proceedings of 33rd European Rotorcraft Forum, Kazan, Russia

  • Wilbur ML, Mirick PH, Yeager WT, Langston CW, Cesnik CES, Shin S (2001) Vibratory loads reduction testing of the NASA/Army/MIT active twist rotor. J Am Helicopter Soc 47(2):123. doi:10.4050/JAHS.47.123

    Article  Google Scholar 

  • Wilkie WK, Wilbur ML, Mirick PH, Cesnik C, Shin S (1999) Aeroelastic analysis of the NASA/Army/MIT active twist rotor. In: Proceedings of American Helicopter Society 55th Annual Forum, Montreal, Canada

Download references

Acknowledgements

The technical and financial support of the STAR partners for the hover test is highly appreciated. The authors are indebted to the rotor test team, especially F. Hoffmann, B. G. van der Wall, R. Keimer, S. Kalow, and M. Krebs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Bauknecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauknecht, A., Ewers, B., Schneider, O. et al. Blade tip vortex measurements on actively twisted rotor blades. Exp Fluids 58, 49 (2017). https://doi.org/10.1007/s00348-017-2312-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2312-3

Keywords

Navigation