Skip to main content
Log in

Advantageous swirling flow in 45° end-to-side anastomosis

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The effects of swirling flow on the flow field in 45° end-to-side anastomosis are experimentally investigated using a particle image velocimetry technique to reveal fluid dynamic advantages of swirling flow in the vascular graft. Non-swirling Poiseuille inlet flow unnecessarily induces pathological hemodynamic features, such as high wall shear stress (WSS) at the ‘bed’ side and large flow separation at the ‘toe’ side. The introduction of swirling flow is found to equalize the asymmetric WSS distribution and reduces the peak magnitude of WSS. In particular, the intermediate swirling intensity of S = 0.45 induces the most uniform axial velocity and WSS distributions compared with weaker or stronger swirling flows, which addresses the importance of proper selection of swirling intensity in the vascular graft to obtain optimum flow fields at the host vessel. In addition, swirling flow reduces the size of flow separation because it disturbs the formation of Dean-type vortices in secondary flow and inhibits secondary flow collision. The beneficial fluid dynamic features of swirling flow obtained in this study are helpful for designing better vascular graft suppressing pathological hemodynamic features in the recipient host vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adrian R, Christensen K, Liu Z (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275–290

    Article  Google Scholar 

  • Brien TO, Walsh M, McGloughlin T (2005) On reducing abnormal hemodynamics in the femoral end-to-side anastomosis: the influence of mechanical factors. Ann Biomed Eng 33:310–322

    Article  Google Scholar 

  • Canver CC (1995) Conduit options in coronary artery bypass surgery. Chest 108:1150–1155

    Article  Google Scholar 

  • Caro CG, Doorly DJ, Tarnawski M, Scott KT, Long Q, Dumoulin CL (1996) Non-planar curvature and branching of arteries and non-planar-type flow. Proc R Soc A 452:185–197

    Article  MATH  MathSciNet  Google Scholar 

  • Caro CG, Cheshire NJ, Watkins N (2005) Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs. J R Soc Interface 2:261–266

    Article  Google Scholar 

  • Chong M, Perry AE, Cantwell B (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2:765–777 (1989–1993)

    Article  MathSciNet  Google Scholar 

  • Cole J, Watterson J, O’Reilly M (2002) Numerical investigation of the haemodynamics at a patched arterial bypass anastomosis. Med Eng Phys 24:393–401

    Article  Google Scholar 

  • Davies M, Hagen PO (1994) Pathobiology of intimal hyperplasia. Br J Surg 81:1254–1269

    Article  Google Scholar 

  • Deutsch S, Tarbell JM, Manning KB, Rosenberg G, Fontaine AA (2006) Experimental fluid mechanics of pulsatile artificial blood pumps. Annu Rev Fluid Mech 38:65–86

    Article  Google Scholar 

  • Ethier C, Prakash S, Steinman DA, Leask RL, Couch GG, Ojha M (2000) Steady flow separation patterns in a 45° junction. J Fluid Mech 411:1–38

    Article  MATH  Google Scholar 

  • Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22:165–197

    Article  Google Scholar 

  • Fry DL (1969) Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Circ Res 24:93–108

    Article  Google Scholar 

  • Gentile AT, Mills JL, Gooden MA et al (1998) Vein patching reduces neointimal thickening associated with prosthetic graft implantation. Am J Surg 176:601–607

    Article  Google Scholar 

  • Ghista DN, Kabinejadian F (2013) Coronary artery bypass grafting hemodynamics and anastomosis design: a biomedical engineering review. Biomed Eng Online 12:129

    Article  Google Scholar 

  • Ha H, Lee S (2014) Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model. Med Eng Phys 36:119

    Article  Google Scholar 

  • Hughes P, How T (1996) Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis. J Biomech 29:855–872

    Article  Google Scholar 

  • Huijbregts H, Blankestijn P, Caro C et al (2007) A helical PTFE arteriovenous access graft to swirl flow across the distal anastomosis: results of a preliminary clinical study. Eur J Vasc Endovasc Surg 33:472–475

    Article  Google Scholar 

  • Kalpakli A, Örlü R (2013) Turbulent pipe flow downstream a 90° pipe bend with and without superimposed swirl. Int J Heat Fluid Flow 41:103–111

    Article  Google Scholar 

  • Kang YJ, Yang S (2012) Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments. Lab Chip 12:1881–1889

    Article  Google Scholar 

  • Keynton R, Rittgers S, Shu M (1991) The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: an in vitro model study. J Biomech Eng 113:458–463

    Article  Google Scholar 

  • Keynton RS, Evancho MM, Rodway NV, Gobin A, Rittgers SE, Sims RL (2001) Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J Biomech Eng 123:464–473

    Article  Google Scholar 

  • Kitoh O (1991) Experimental study of turbulent swirling flow in a straight pipe. J Fluid Mech 225:445–479

    Article  Google Scholar 

  • Kong B, Olsen M, Fox R, Hill J (2011) Population, characteristics and kinematics of vortices in a confined rectangular jet with a co-flow. Exp Fluids 50:1473–1493

    Article  Google Scholar 

  • Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriol Thromb Vasc Biol 5:293–302

    Article  Google Scholar 

  • Lee J, Rahman F, Laoui T, Karnik R (2012) Bubble-induced damping in displacement-driven microfluidic flows. Phys Rev E 86:026301

    Article  Google Scholar 

  • Longest PW, Kleinstreuer C, Deanda A (2005) Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Ann Biomed Eng 33:1752–1766

    Article  Google Scholar 

  • Loth F, Fischer PF, Bassiouny HS (2008) Blood flow in end-to-side anastomoses. Annu Rev Fluid Mech 40:367–393

    Article  MathSciNet  Google Scholar 

  • Miller J, Foreman R, Ferguson L, Faris I (1984) Interposition vein cuff for anastomosis of prosthesis to small artery. Aust N Z J Surg 54:283–285

    Article  Google Scholar 

  • Norberto JJ, Sidawy AN, Trad KS et al (1995) The protective effect of vein cuffed anastomoses is not mechanical in origin. J Vasc Surg 21:558–566

    Article  Google Scholar 

  • O’Brien T, Walsh M, Kavanagh E, Finn S, Grace P, McGloughlin T (2007) Surgical feasibility study of a novel polytetrafluoroethylene graft design for the treatment of peripheral arterial disease. Ann Vasc Surg 21:611–617

    Article  Google Scholar 

  • Ojha M (1993) Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. J Biomech 26:1377–1388

    Article  Google Scholar 

  • Papaharilaou Y, Doorly D, Sherwin S (2002) The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J Biomech 35:1225–1239

    Article  Google Scholar 

  • Piomelli U, Yu Y, Adrian RJ (1996) Subgrid-scale energy transfer and near-wall turbulence structure. Phys Fluids 8:215–224 (1994-present)

    Article  MATH  Google Scholar 

  • Poelma C, Van der Heiden K, Hierck B, Poelmann R, Westerweel J (2009) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 7:91–103

    Article  Google Scholar 

  • Pruvost J, Legrand J, Legentilhomme P (2004) Numerical investigation of bend and torus flows, part I: effect of swirl motion on flow structure in U-bend. Chem Eng Sci 59:3345–3357

    Article  Google Scholar 

  • Sherwin S, Watkins N, Dumoulin C et al (2000) The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis. J Biomech Eng 122:86–95

    Article  Google Scholar 

  • Staalsen N-H, Ulrich M, Winther J, Pedersen EM, How T, Nygaard H (1995) The anastomosis angle does change the flow fields at vascular end-to-side anastomoses in vivo. J Vasc Surg 21:460–471

    Article  Google Scholar 

  • Stonebridge PA, Vermassen F, Dick J, Belch JJ, Houston G (2012) Spiral laminar flow prosthetic bypass graft: medium-term results from a first-in-man structured registry study. Ann Vasc Surg 26:1093–1099

    Article  Google Scholar 

  • Taylor MR, Loh A, McFarland R, Cox M, Chester J (1992) Improved technique for polytetrafluoroethylene bypass grafting: long-term results using anastomotic vein patches. Br J Surg 79:348–354

    Article  Google Scholar 

  • Thielicke W, Stamhuis EJ (2010) PIVlab-time-resolved digital particle image velocimetry tool for matlab. Published under the BSD license, programmed with MATLAB 7:R14

  • Tomkins CD, Adrian RJ (2003) Spanwise structure and scale growth in turbulent boundary layers. J Fluid Mech 490:37–74

    Article  MATH  Google Scholar 

  • Van Canneyt K, Morbiducci U, Eloot S, De Santis G, Segers P, Verdonck P (2013) A computational exploration of helical arterio-venous graft designs. J Biomech 46:345–353

    Article  Google Scholar 

  • Wen J, Zheng T, Jiang W, Deng X, Fan Y (2011) A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. ASAIO J 57:399–406

    Article  Google Scholar 

  • Whittemore AD, Clowes AW, Couch NP, Mannick JA (1981) Secondary femoropopliteal reconstruction. Ann Surg 193:35

    Article  Google Scholar 

  • Wu Y, Christensen KT (2006) Population trends of spanwise vortices in wall turbulence. J Fluid Mech 568:55–76

    Article  MATH  Google Scholar 

  • Zheng T, Fan Y, Xiong Y, Jiang W, Deng X (2009) Hemodynamic performance study on small diameter helical grafts. ASAIO J 55:192–199

    Article  Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S (1996) Autogeneration of near-wall vortical structures in channel flow. Phys Fluids 8:288–290 (1994-present)

    Article  MATH  Google Scholar 

  • Zhou J, Adrian R, Balachandar S, Kendall T (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea under a Grant Funded by the Korean Government (MSIP) (No. 2008-0061991).

Conflict of interest

The authors declare that they have no competing interests and all authors participated sufficiently in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Joon Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, H., Choi, W., Park, H. et al. Advantageous swirling flow in 45° end-to-side anastomosis. Exp Fluids 55, 1861 (2014). https://doi.org/10.1007/s00348-014-1861-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1861-y

Keywords

Navigation