Skip to main content
Log in

Laser-based investigations in gas turbine model combustors

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field–flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ax H, Stopper U, Meier W, Aigner M, Güthe F (2009) Experimental analysis of the combustion behavior of a gas turbine burner by laser measurement techniques. In: Proceedings of the ASME Turbo Expo, Orlando, USA, GT2009-59171

  • Barlow RS (2007) Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc Combust Inst 31:49–75

    Article  Google Scholar 

  • Bergmann V, Meier W, Wolff D, Stricker W (1998) Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame. Appl Phys B 66:489–502

    Article  Google Scholar 

  • Böhm B, Heeger C, Boxx I, Meier W, Dreizler A (2009) Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous high-speed PIV/OH PLIF. Proc Combust Inst 32:1647–1654

    Article  Google Scholar 

  • Boxx I, Heeger C, Gordon R, Böhm B, Dreizler A, Meier W (2009a) On the importance of temporal context in interpretation of flame discontinuities. Combust Flame 156:269–271

    Article  Google Scholar 

  • Boxx I, Stöhr M, Carter C, Meier W (2009b) Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames. Appl Phys B 95:23–29

    Article  Google Scholar 

  • Boxx I, Stöhr M, Carter C, Meier W (2010) Temporally resolved planar measurements of transient- and temporally developing phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust Flame (accepted)

  • Candel S (2002) Combustion dynamics and control: progress and challenges. Proc Combust Inst 29:1–28

    Article  Google Scholar 

  • Carter CD, Donbar JM, Driscoll JF (1998) Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames. Appl Phys B 66:129–132

    Article  Google Scholar 

  • Donbar JM, Driscoll JF, Carter CD (2001) Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flames. Combust Flame 125:1239–1257

    Article  Google Scholar 

  • Duan XR, Weigand P, Meier W, Keck O, Lehmann B, Stricker W, Aigner M (2004) Experimental investigations and laser based validation measurements in a gas turbine model combustor. Prog Comp Fluid Dyn 4:175–182

    Article  Google Scholar 

  • Duan XR, Meier W, Weigand P, Lehmann B (2005) Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor. Appl Phys B 80:389–396

    Article  Google Scholar 

  • Eckbreth AC (1996) Laser diagnostic for combustion temperature and species. Gordon and Breach, Australia

    Google Scholar 

  • Fajardo C, Sick V (2009) Development of a high-speed UV particle image velocimetry technique and application for measurements in internal combustion engines. Exp Fluids 46:43–53

    Article  Google Scholar 

  • Fernandes EC, Heitor MV, Shtork SI (2006) An analysis of unsteady highly turbulent swirling flow in a model vortex combustor. Exp Fluids 40:177–187

    Article  Google Scholar 

  • Filatyev SA, Driscoll JF, Carter CD, Donbar JM (2005) Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust Flame 141:1–21

    Article  Google Scholar 

  • Fiorina B, Vicquelin R, Auzillon P, Darabiha N, Gicquel O, Veynante D (2010) A filtered tabulated chemistry model for LES of premixed combustion. Combust Flame 157:465–475

    Article  Google Scholar 

  • Galpin J, Naudin A, Vervisch L, Angelberger C, Colin O, Domingo P (2008) Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust Flame 155:247–266

    Article  Google Scholar 

  • Gregor MA, Seffrin F, Fuest F, Geyer G, Dreizler A (2009) Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proc Combust Inst 33:1732–1746

    Google Scholar 

  • Grünefeld G, Schütte M, Andresen P (2000) Simultaneous multiple-line Raman/Rayleigh/LIF measurements in combustion. Appl Phys B 70:309–313

    Article  Google Scholar 

  • Gupta AK, Lilley DG, Syred N (1984) Swirl flows. Abacus Press, Kent

    Google Scholar 

  • Han D, Mungal MG (2003) Simultaneous measurement of velocity and CH distributions. Part 1: jet flames in co-flow. Combust Flame 132:565–590

    Article  Google Scholar 

  • Hardalupas Y, Orain M (2004) Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust Flame 139:188–207

    Article  Google Scholar 

  • Hartung G, Hult J, Balachandran R, Mackley MR, Kaminski CF (2009) Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH. Appl Phys B 96:843–862

    Article  Google Scholar 

  • Heeger C, Böhm B, Boxx I, Meier W, Ahmed SF, Mastorakos E, Dreizler A (2008) Planar laser diagnostics at high repetition rates: acquisition and analysis of transient combustion processes. In: Proceedings of the ASME Turbo Expo, Berlin, Germany, Paper GT2008-50152

  • Hult J, Meier U, Meier W, Harvey A, Kaminski CF (2005) Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2D laser techniques and multi-scalar measurements. Proc Combust Inst 30:701–709

    Article  Google Scholar 

  • Jähne B (2005) Digital image processing. Springer, Berlin

    Google Scholar 

  • Jiang N, Webster MC, Lempert WR (2009) Advances in generation of high-repetition-rate burst mode laser output. Appl Opt 48:B23–B31

    Article  Google Scholar 

  • Kaminski CF, Hult J, Aldèn M (1999) High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame. Appl Phys B 68:757–760

    Article  Google Scholar 

  • Keck O, Meier W, Stricker W, Aigner M (2002) Establishment of a confined swirling natural gas/air flame as a standard flame: temperature and species distributions from laser Raman measurements. Combust Sci Technol 174:117–151

    Article  Google Scholar 

  • Kittler C, Dreizler A (2007) Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate. Appl Phys B 89:163–166

    Article  Google Scholar 

  • Kohse-Höinghaus K, Jeffries J (eds) (2002) Applied combustion diagnostics. Taylor and Francis, New York

    Google Scholar 

  • Kohse-Höinghaus K, Barlow RS, Aldén M, Wolfrum J (2005) Combustion at the focus: laser diagnostics and control. Proc Combust Inst 30:89–123

    Article  Google Scholar 

  • Kojima J, Nguyen Q-V (2004) Measurement and simulation of spontaneous Raman scattering in high-pressure fuel-rich H2-air flames. Meas Sci Technol 15:565–580

    Article  Google Scholar 

  • Külsheimer C, Büchner H (2002) Combustion dynamics of turbulent swirling flames. Combust Flame 131:70–84

    Article  Google Scholar 

  • Lawn CJ, Evesque S, Polifke W (2004) A model for the thermoacoustic response of a premixed swirl burner, Part I: acoustic aspects. Combust Sci Technol 176:1331–1358

    Article  Google Scholar 

  • Lee JG, Santavicca DA (2003) Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J Propuls Power 19:735–750

    Article  Google Scholar 

  • Lieuwen TC, Yang V (2006) Combustion instabilities in gas turbine engines. American Institute of Aeronautics and Astronautics, Inc., Reston

    Google Scholar 

  • Lieuwen T, Torres H, Johnson C, Zinn BT (2001) A mechanism of combustion instability in lean premixed gas turbine combustors. Trans ASME 123:182–189

    Google Scholar 

  • Lucca-Negro O, Doherty TO (2001) Vortex breakdown: a review. Prog Energy Combust Sci 27:431–481

    Article  Google Scholar 

  • Meier W, Duan XR, Weigand P (2006) Investigations of swirl flames in a gas turbine model combustor II. Flow field, structures, temperature, and species distributions. Combust Flame 144:225–236

    Article  Google Scholar 

  • Meier W, Weigand P, Duan XR, Giezendanner-Thoben R (2007) Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust Flame 150:2–26

    Article  Google Scholar 

  • Meyer TR, Fiechtner GJ, Gogineni SP, Rolon JC, Carter CD, Gord JR (2004) Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-air counterflow diffusion flames. Exp Fluids 36:259–267

    Article  Google Scholar 

  • Miller JD, Slipchenko M, Meyer TR, Jiang N, Lempert WR, Gord JR (2009) Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator. Opt Lett 34:1309–1311

    Article  Google Scholar 

  • Muruganandam TM, Kim B-H, Moreell MR, Nori V, Patel M, Romig BW, Seitzman JM (2005) Optical equivalence ratio sensors for gas turbine combustors. Proc Combust Inst 30:1601–1609

    Article  Google Scholar 

  • Paa W, Müller D, Stafast H, Triebel W (2007) Flame turbulences recorded at 1 kHz using planar induced fluorescence upon hot band excitation of OH radicals. Appl Phys B 86:1–5

    Article  Google Scholar 

  • Petersson P, Olofsson J, Brackmann C, Seyfried H, Zetterberg J, Richter M, Alden M, Linne MA, Cheng RK, Nauert A, Geyer D, Dreizler A (2007) Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame. Appl Opt 46:3928–3936

    Article  Google Scholar 

  • Rehm JE, Clemens NT (1998) The relationship between vorticity/strain and reaction zone structure in turbulent nonpremixed jet flames. Proc Comb Inst 27:1113–1120

    Google Scholar 

  • Roux S, Lartigue G, Poinsot T, Meier U, Bérat C (2005) Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust Flame 141:40–54

    Article  Google Scholar 

  • Sadanandan R, Stöhr M, Meier W (2008) Simultaneous OH PLIF and PIV measurements in a gas turbine model combustor. Appl Phys B 90:609–618

    Article  Google Scholar 

  • Sattelmayer T (2003) Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations. J Eng Gas Turbines Power 125:11–19

    Article  Google Scholar 

  • Schadow KC, Gutmark E (1992) Combustion instability related to vortex shedding in dump combustors and their passive control. Prog Energy Combust Sci 18:117–132

    Article  Google Scholar 

  • Schildmacher K-U, Koch R, Bauer HJ (2006) Experimental characterization of premixed flame instabilities of a model gas turbine burner. Flow Turbul Combust 76:177–197

    Article  Google Scholar 

  • Steinberg AM, Driscoll JF (2009) Straining and wrinkling processes during turbulence—premixed flame interaction measured using temporally-resolved diagnostics. Combust Flame 156:2285–2306

    Article  Google Scholar 

  • Steinberg AM, Boxx I, Stöhr M, Carter CD, Meier W (2010) Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor. Combust Flame (submitted)

  • Stöhr M, Sadanandan R, Meier W (2009) Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proc Combust Inst 32:2925–2932

    Article  Google Scholar 

  • Stopper U, Aigner M, Ax H, Meier W, Sadanandan R, Stöhr M, Bonaldo A (2010) PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames. Exp Thermal Fluid Sci 34:396–403

    Google Scholar 

  • Syed KJ, Buchanan E (2005) The nature of NO x formation within an industrial gas turbine dry low emission combustor. In: Proceedings of the ASME Turbo Expo, Reno-Tahoe, Nevada, USA, GT-2005-68070

  • Tanahashi M, Muratami S, Choi G-M, Fukuchi Y, Miyauchi T (2005) Simultaneous CH-OH PLIF and Stereoscopic PIV Measurements of Turbulent Premixed Flames. Proc Combust Inst 30:1665–1672

    Article  Google Scholar 

  • Tanahashi M, Taka S, Shimura M, Miyauchi T (2008) CH doublepulsed PLIF measurements in turbulent premixed flame. Exp Fluids 45:323–332

    Article  Google Scholar 

  • Upatnieks A, Driscoll JF, Rasmussen CC, Ceccio SL (2004) Liftoff of turbulent jet flames-assessment of edge flame and other concepts using cinema-PIV. Combust Flame 138:259–272

    Article  Google Scholar 

  • Valera-Medina A, Syred N, Griffiths A (2009) Visualisation of isothermal large coherent structures in a swirl burner. Combust Flame 159:1723–1734

    Article  Google Scholar 

  • Wäsle J, Winkler A, Sattelmayer T (2005) Spatial coherence of the heat release fluctuations in turbulent jet and swirl flames. Flow Turbul Combust 75:29–50

    Article  MATH  Google Scholar 

  • Watson KA, Lyons KM, Donbar JM, Carter CD (1999) Scalar and velocity field measurements in a lifted CH4-air diffusion flame. Combust Flame 117:257–271

    Article  Google Scholar 

  • Weber R, Dugué J (1992) Combustion accelerated swirling flows in high confinements. Prog Energy Combust Sci 18:349–367

    Article  Google Scholar 

  • Wehr L, Meier W, Kutne P, Hassa C (2007) Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure. Proc Comb Inst 31:3099–3106

    Article  Google Scholar 

  • Weigand P, Meier W, Duan XR, Giezendanner-Thoben R, Meier U (2005) Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor. Flow Turbul Combust 75:275–292

    Article  MATH  Google Scholar 

  • Weigand P, Meier W, Duan XR, Stricker W, Aigner M (2006) Investigations of swirl flames in a gas turbine model combustor. Part I: flow field, structures, temperature and species distributions. Combust Flame 144:205–224

    Article  Google Scholar 

  • Weigand P, Meier W, Duan XR, Aigner M (2007) Laser-based investigations of thermoacoustic instabilities in a lean premixed gas turbine model combustor. J Eng Gas Turbine Power 129:664–671

    Article  Google Scholar 

  • Wolfrum J (1998) Lasers in combustion: from basic theory to practical devices. Proc Combust Inst 28:1–41

    Google Scholar 

Download references

Acknowledgments

The authors thank Rajesh Sadanandan for his contribution to OH LIF measurements, Adam Steinberg for the analysis of part of the high-speed measurements and Peter Weigand and Xuru Duan for the participation in the Raman experiments. The financial support within the DLR project MVS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, W., Boxx, I., Stöhr, M. et al. Laser-based investigations in gas turbine model combustors. Exp Fluids 49, 865–882 (2010). https://doi.org/10.1007/s00348-010-0889-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0889-x

Keywords

Navigation