Skip to main content
Log in

Spatial Coherence of the Heat Release Fluctuations in Turbulent Jet and Swirl Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The noise generation of turbulent flames is governed by temporal changes of the total flame volume due to local heat release fluctuations. On the basis of the wave equation an expression for the relationship between the acoustic power and the heat release fluctuations is derived and a correlation function is obtained which reveals that the sound pressure level of flames is governed by the spatial coherence. Noise models rely on precise coherence information in terms of characteristic length scales, which are the measure of the acoustic efficiency of the flame. Since the published length scale information is scarce and inconsistent, length scales were measured for a number of laboratory flames using two measurement techniques developed for this purpose: A planar LIF-system with a repetition rate of 1 kHz acquires the instantaneous flame front position and heat release, whereas two chemiluminescence probes with an optics confining the measurement volume to a line of sight provide further spatial correlation data. For all flames investigated the length scales are smaller than the height of the burner exit annulus and they are of the order of the local flame brush thickness. Using the measured length scales, the coherent volume and the efficiency of the noise generation are calculated, which are three orders of magnitude higher than measured. However, the proper order of magnitude is obtained, if only the measured fluctuating part of the thermal power is used in the model and if the periodic formation of local zones with heat release overshoot and deficit are properly incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lighthill, M.J., On sound generated gerodynamically. Part I. General theory. Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, London 211 (1952) 564–587.

  2. Proudman, I., The generation of noise by isotropic turbulence. Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, London 214 (1952) 119–132.

  3. Ribner, H.S., Quadrupole correlation governing the pattern of jet noise. J. Fluid Mechan. 38(1) (1969) 1–24.

    ADS  MATH  Google Scholar 

  4. Smith, T.J.B. and Kilham, J.K., Noise generation by open turbulent flames. J. Acoust. Soc. Am. 35(5) (1963) 715–724.

    ADS  Google Scholar 

  5. Strahle, W.C., On combustion generated noise. J. Fluid Mechan. 49(2) (1971) 399–414.

    Article  ADS  MATH  Google Scholar 

  6. Clavin, P. and Siggia, E.D., Turbulent premixed flames and sound generation. Combust. Sci. Technol. 78 (1991) 147–155.

    Google Scholar 

  7. Klein, S.A., On the acoustics of turbulent non-premixed flames. Dissertation, University Twente, (2000) FEBO Druk, Enschede. ISBN 90-375 14096.

  8. Sattelmayer, T., Hirsch, C., Krasznai, N., Wäsle, J. and Winkler, A., Lärmerzeugung von Drallflammen: Charakteristika und Modellierung. BMBF Workshop, Turbulenz in der Energietechnik, Aachen (2004).

  9. Boineau, P., Gervais, Y. and Morice, V., An Aerothermoacoustic model for computation of sound radiated by turbulent flames. 25th Anniversary Inter Noise Congress, Liverpool (1996) pp. 495–498.

  10. Jordan, P., Wells, R., Gervais, Y. and Delville, J., Optimisation of correlation function models for statistical aeroacoustic noise prediction. Proceedings of the Joint Congress CFA/DAGA'04 March 22–25, Strasbourg (2004).

  11. Mandel, J., The Statistical Analysis of Experimental Data. Dover Publication, Inc., New York (1984) p. 55.

  12. Hinze, J., Turbulence. McGraw-Hill, New York (1975).

    Google Scholar 

  13. Rotta, C., Turbulente Strömungen. B.G. Teubner Stuttgart (1972) pp. 24–27.

  14. Kröner, M., Einfluss lokaler Löschvorgänge auf den Flammrückschlag durch verbrennungsinduziertes Wirbelaufplatzen. Dissertation, Lehrstuhl für Thermodynamik, TU München (2003).

  15. Winkler, A., Wäsle, J. and Sattelmayer, T., Investigation of Combustion Noise with Real Time Measurement Techniques. Proceedings of the Joint Congress CFA/DAGA'04 March 22–25, Strasbourg (2004).

  16. Büchner, H., Experimentelle und theoretische Untersuchungen der Entstehungsmechanismen selbsterregter Druckschwingungen in technischen Vormisch-Verbrennungssystemen. Dissertation, Lehrstuhl für Feuerungstechnik, TH Karlsruhe (1992).

  17. Boineau, P., Gervais, Y. and Toquard, M., Spatio-Frequential optical measurements of acoustic sources in a turbulent flame. Proceedings of Internoise 97, Budapest (1997) pp. 251–254.

  18. Weinmüller, C., Adaption einer Optik zur Chemolumineszenz-Messung mit Hilfe eines Photomultipliers. Studienarbeit, Lehrstuhl für Thermodynamik, TU München (2003).

  19. Bragg, S.L., Combustion noise. J. Inst. Fuel (January 1963) 12–16.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Wäsle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wäsle, J., Winkler, A. & Sattelmayer, T. Spatial Coherence of the Heat Release Fluctuations in Turbulent Jet and Swirl Flames. Flow Turbulence Combust 75, 29–50 (2005). https://doi.org/10.1007/s10494-005-8586-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-005-8586-1

Key Words

Navigation