Skip to main content
Log in

Effect of ambient density and orifice diameter on gas entrainment by a single-hole diesel spray

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The gas entrainment into a non-vaporizing single-hole Diesel spray submitted to variable density is studied experimentally in order to better understand the effect on mixture formation. Particle Image Velocimetry on fluorescent tracers has been applied to obtain measurement in the flow field surrounding the spray. The “quasi-steady” region of the spray (far from the head vortex) as well as the non-stationary region has been investigated. Significant effects of both ambient density and nozzle diameter on gas entrainment have been pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

CCD:

Charge coupled device

CF4:

Tetrafluoromethane

FPIV:

Fluorescent particle image velocimetry

NMT:

Normalized median residual test

SNR:

Signal noise ratio

E :

Energy (J)

P :

Pressure (Pa)

R :

Radial distance (m)

Re p :

Particle Reynolds number

U :

Velocity component (m s−1)

U :

Mean normal velocity component (m s−1)

S :

Control surface

|U|:

Module of velocity (m s−1)

V R :

Relative velocity (m s−1)

Z :

Axial distance (m)

dasoi:

Delay after start of injection (s)

d 0 :

Nozzle diameter (m)

f :

Frequency (Hz)

\( \dot{m}_{{{\text{e\_loc}}}} \) :

Local mass flow rate of entrained gas (kg s−1)

\( \dot{m}_{0} \) :

Liquid mass flow rate (kg s−1)

R :

Radius (m)

τ p :

Droplets relaxation time (s)

Δerror :

Relative error

Δt laser :

Delay between two FPIV images (s)

Δt flash :

Delay between two shadowgraphy images (s)

Ω:

Control line

αf :

Fuel volume fraction

θ:

Cone spray angle (°)

λ:

Wavelength (m)

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

τ :

Mixing rate

c:

Cumulative

e:

Entrained

f:

Fuel

g:

Gas

inj:

Injected

l:

Local

r:

Radial

References

  • Araneo L, Coghe A, Brunello G, Cossali GE (1999) Experimental investigation of gas density effects on diesel spray penetration and entrainment, SAE 1999-01-0525

  • Arbeau A (2004) Etude de l’entraînement d’air dans un spray haute pression. Diagnostics optiques et application à l’injection Diesel. PhD Thesis, INP Toulouse, France

  • Cao Z, Nishino K, Mizumo S, Torii K (2000) PIV measurement of internal structure of Diesel fuel spray. Exp Fluids Suppl:S211–S219

    Article  Google Scholar 

  • Cossali GE (2001) An ingral model for gas entrainment into full cone sprays. J Fluid Mech 439:353–366

    Article  MATH  Google Scholar 

  • Cossali GE, Coghe A, Gerla A, Brunello G (1996) Effect of gas density and temperature on air entrainment in a transient diesel spray. SAE Paper 960862

  • Delay G (2005) Analyse des écoulements transitoires dans les systèmes d’injection directe essence, effets sur l’entraînement d’air instationnaire du spray. PhD Thesis, INP Toulouse, France

  • Donghee H, Mungal MG (2001) Direct measurement of entrainment in reacting/non-reacting turbulent jets. Combust Flame 124:370–386

    Article  Google Scholar 

  • Ghosh S, Hunt J (1994) Induced air velocity within droplet driven sprays. Proc R Soc Lond A 444:105–127

    Article  Google Scholar 

  • Ha J, Norisama I, Sato GT, Hayashi A, Tanabe H (1984) Experimental investigation of entrainment into diesel spray, SAE Paper No. 841078

  • Hosoya H, Obokata T (1992) LDA measurements of spray flow from a single hole diesel type nozzle under steady conditions. In: Proceedings of the 6th international symposium on applications of laser technology to fluid mechanics, 37.5. Inst. Superior Tecnico, Lisbon-Portugal

  • Lecordier B (1997) Etude de l’interaction de la propagation d’une flamme pré mélangée avec le champ aérodynamique par association de la tomographie laser et de la vélocimétrie par image de particules. PhD Thesis, Rouen Univ., France

  • Lecordier B, Trinité M (2003) Advanced PIV algorithms with image distortion validation and comparison using synthetic images of turbulent flow. In: Proceedings of EUROPIV2 workshop, Zaragoza, Spain

  • Lezieki D, Gobin C, Ledoyen S, Ledoux M (1999) The structure of the air flow entrained by a high pressure diesel jet. In: ILASS Europe 99 proceedings, Toulouse, France

  • Maurel S (2001) Etude par imagerie laser de la génération et de la rupture d’un écoulement tourbillonnaire compressé. Situation modèle pour la validation de simulations aux grandes échelles dans les moteurs. PhD Thesis, INP Toulouse, France

  • Morgan RE, Wray J, Keinnard DA, Crua C, Heikal MR (2003) Characterization of the soot formation processes in a high pressure combusting Diesel fuel spray, SAE Paper No. 2003-01-3086

  • Nobach H, Bodenschatz E (2007) Limitations of accuracy in PIV due to individual variations of particle image intensities. Exp Fluids 47:27–38

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 9:62–66

    Article  Google Scholar 

  • Pickett L, Siebers D (2005) Orifice diameter effects on diesel fuel jet flame structure. J Eng Gas Turbines Power 127:187–196

    Article  Google Scholar 

  • Pouille JP (2000) Combustion diesel. Moteurs diesel: conception—evolution, industry formation ENSPM

  • Prosperi B, Delay G, Bazile R, Helie J (2007) FPIV study of gas entrainment by a hollow cone spray submitted to variable density. Exp Fluids 43:315–327

    Article  Google Scholar 

  • Rajalingam BV, Farrell PV (1999) The effect of injection pressure on air entrainment into transient diesel sprays, SAE 1999-01-0523

  • Reitz RD (1987) Modeling atomization processes in high pressure vaporizing sprays. Atomisation Spray Technol 3:309–337

    Google Scholar 

  • Rhim DR, Farrell PV (2002) Air flow surrounding burning transient diesel sprays, SAE (2002 01 2668)

  • Ricou FP, Spalding DB (1960) Measurements of entrainment by axisymmetrical turbulent jets. J Fluid Mech 11:21–32

    Article  Google Scholar 

  • Rottenkolber G, Gindele J, Raposo J, Dullenkopf K, Hentschel W, Wittig S, Spicher U, Merzkirch W (2002) Spray analysis of a gasoline direct injector by means of two-phase PIV. Exp Fluids 32:710–721

    Google Scholar 

  • Ruff GA, Sagar AD, Faeth GM (1988) Structure and mixing properties of pressure atomized sprays, AIAA Paper 88-0237

  • Schiller L, Naumann A (1935) A drag coefficient correlation. Z Ver Deutsch Ing 77:318

    Google Scholar 

  • Seneschal J (2005) Etude et réalisation d’un système automatique de caractérisation de jets Diesel en champ proche et lointain. PhD Thesis, Saint Etienne Univ., France

  • Sepret (2009) Application de la PIV sur traceurs fluorescents à l’étude de l’entraînement d’air par un spray Diesel. Influence de la densité ambiante et du diamètre de trou d’injecteur. PhD Thesis, INP Toulouse, France

  • Siebers D (1998) Liquid phase fuel penetration in diesel sprays. SAE Paper 980809

  • Smallwood GJ, Gülder OL (2000) Views on the structure of transient diesel sprays. Atomization Sprays 10:355–386

    Google Scholar 

  • Towers DP, Towers CE, Buckberry CH, Reeves M (1999) A colour PIV system employing fluorescent particles for two phase flow measurements. Meas Sci Technol 10:824–830

    Article  Google Scholar 

  • Wen CY, Yu YH (1965) Mechanics of fluidization, fluid particle technology. Chemical Eng Prog Symp Ser 62:100–111

    Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Renault SA is gratefully acknowledged. The authors would like to thank the contribution of P. Gastaldi, B. Argueyrolles to the research program and D. Passerel for mass flow measurements. The authors also like to thank L. Doradoux, J. Lauridsen and Delphi Diesel System for bench set-up and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bazile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sepret, V., Bazile, R., Marchal, M. et al. Effect of ambient density and orifice diameter on gas entrainment by a single-hole diesel spray. Exp Fluids 49, 1293–1305 (2010). https://doi.org/10.1007/s00348-010-0869-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0869-1

Keywords

Navigation