Skip to main content
Log in

A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In order to accurately assess measurement resolution and measurement uncertainty in DPIV and TPIV measurements, a series of simulations were conducted based on the flow field from a homogeneous isotropic turbulence data set (Re λ = 141). The effect of noise and spatial resolution was quantified by examining the local and global errors in the velocity, vorticity and dissipation fields in addition to other properties of interest such as the flow divergence, topological invariants and energy spectra. In order to accurately capture the instantaneous gradient fields and calculate sensitive quantities such as the dissipation rate, a minimum resolution of x/η = 3 is required, with smoothing recommended for the TPIV results to control the inherently higher noise levels. Comparing these results with experimental data showed that while the attenuation of velocity and gradient quantities was predicted well, higher noise levels in the experimental data led increased divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Antonia RA, Mi J (1993) Corrections for velocity and temperature derivatives in turbulent flows. Exp Fluids 14:203–208. doi:10.1007/BF00189511

    Article  Google Scholar 

  • Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids, p 116

  • Cadot O, Douady S, Couder Y (1995) Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow. Phys Fluids 7:630–646

    Article  Google Scholar 

  • Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids 2:765–777

    Article  MathSciNet  Google Scholar 

  • Davidson P (2004) Turbulence, an introduction for scientists and engineers. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Douady S, Couder Y, Brachet ME (1991) Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys Rev Lett 67:983–986

    Article  Google Scholar 

  • Elsinga G, Scarano F, Wieneke B, van Oudheusden B (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Foucaut JM, Carlier J, Stanislas M (2004) PIV optimization for the study of turbulent flow using spectral analysis. Meas Sci Technol 15:1046–1058. doi:10.1088/0957-0233/15/6/003

    Article  Google Scholar 

  • Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2007) Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp Fluids 42:923–939. doi:10.1007/s00348-007-0303-5

    Article  Google Scholar 

  • Herman G, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6:273–294

    Article  Google Scholar 

  • Hinsch K (2002) Holographic particle image velocimetry. Meas Sci Technol 13:R61–R72

    Article  Google Scholar 

  • Hori T, Sakakibara J (2004) High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids. Meas Sci Technol 15:1067–1078

    Article  Google Scholar 

  • Hwang W, Eaton JK (2004) Creating homogeneous and isotropic turbulence without a mean flow. Exp Fluids 36:444–454. doi:10.1007/s00348-003-0742-6

    Article  Google Scholar 

  • Ishihara T, Gotoh T, Kaneda Y (2009) Study of high-reynolds number isotropic turbulence by direct numerical simulation. Annual Annu Rev Fluid Mech 41:165–180. doi:10.1146/annurev.fluid.010908.165203

    Article  MathSciNet  Google Scholar 

  • Lavoie P, Avallone G, de Gregorio F, Romano GP, Antonia RA (2007) Spatial resolution of PIV for the measurement of turbulence. Exp Fluids 43:39–51. doi:10.1007/s00348-007-0319-x

    Article  Google Scholar 

  • Lecordier B, Demare D, Vervisch LMJ, Réveillon J, Trinité M (2001) Estimation of the accuracy of PIV treatments for turbulent flow studies by direct numerical simulation of multi-phase flow. Meas Sci Technol 12:1382–1391. doi:10.1088/0957-0233/12/9/302

    Article  Google Scholar 

  • Liu S, Katz J, Meneveau C (1999) Evolution and modelling of subgrid scales during rapid straining of turbulence. J Fluid Mech 387:281–320

    Article  MATH  MathSciNet  Google Scholar 

  • Maas H, Gruen A, Papantoniou D (2004) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15:133–146

    Google Scholar 

  • Mullin JA, Dahm WJA (2006) Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results. Phys Fluids 18(3):035102. doi:10.1063/1.2166448

    Google Scholar 

  • Nobach H, Bodenschatz E (2009) Limitations of accuracy in PIV due to individual variations of particle image intensities. Exp Fluids 47:27–38. doi:10.1007/s00348-009-0627-4

    Article  Google Scholar 

  • O’Neill P, Soria J (2005) The relationship between the topological structures in turbulent flow and the distribution of a passive scalar with an imposed mean gradient. Fluid Dynam Res 36:107–120

    Article  MATH  Google Scholar 

  • Ooi A, Martin J, Soria J, Chong MS (1999) A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J Fluid Mech 381:141–174

    Article  MATH  MathSciNet  Google Scholar 

  • Pao YH (1965) Structure of turbulent velocity and scalar fields at large wavenumbers. Phys Fluids 8:1063–1075. doi:10.1063/1.1761356

    Article  Google Scholar 

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, New York

    Google Scholar 

  • Schröder A, Geisler R, Elsinga G, Scarano F, Dierksheide U (2006) Investigation of a turbulent spot using time-resolved tomographic PIV. In: 13th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454. doi:10.1088/0957-0233/8/12/008

    Article  Google Scholar 

  • Sreenivasan KR (1998) An update on the energy dissipation rate in isotropic turbulence. Phys Fluids 10:528–529. doi:10.1063/1.869575

    Article  MATH  MathSciNet  Google Scholar 

  • Tanahashi M, Miyauchi T, Ikeda J (1999) Fine scale structure in turbulence, fluid mechanics and its application. In: IUTAM Symposium on simulation and identification of organized structures in flows, fluid mechanics and its applications, vol 52. pp 131–140

  • Tsinober A, Kit E, Dracos T (1992) Experimental investigation of the field of velocity gradients in turbulent flows. J Fluid Mech 242:169–192. doi:10.1017/S0022112092002325

    Article  Google Scholar 

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247. doi:10.1007/BF00206543

    Article  Google Scholar 

  • Wieneke B (2005) Stereo-PIV using self-calibration on particle images. Exp Fluids 39:267–280. doi:10.1007/s00348-005-0962-z

    Article  Google Scholar 

  • Wieneke B (2007) Volume self-calibration for stereo-PIV and tomographic-PIV. In: 7th international symposium on particle image velocimetry, Rome, Italy

  • Wieneke B, Taylor S (2006) Fat-sheet PIV with computation of full 3D-strain tensor using tomographic reconstruction. In: 13th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353–358

    Article  Google Scholar 

  • Worth N, Nickels T (2007) A computational study of tomographic reconstruction accuracy and the effects of particle blocking. In: 5th Joint ASME/JSME Fluids Engineering Conference, San Diego, California

  • Worth NA, Nickels TB (2008) Acceleration of Tomo-PIV by estimating the initial volume intensity distribution. Exp Fluids 45:847–856. doi:10.1007/s00348-008-0504-6

    Article  Google Scholar 

  • Wyngaard JC (1968) Measurement of small-scale turbulence structure with hot wires. J Phys E Sci Instr 1:1105–1108. doi:10.1088/0022-3735/1/11/310

    Article  Google Scholar 

  • Zhang J, Tao B, Katz J (1997) Turbulent flow measurement in a square duct with hybrid holographic PIV. Exp Fluids 23:373–381

    Article  Google Scholar 

  • Zhu Y, Antonia RA (1996) The spatial resolution of hot-wire arrays for the measurement of small-scale turbulence. Meas Sci Technol 7:1349–1359. doi:10.1088/0957-0233/7/10/006

    Article  Google Scholar 

  • Zocchi G, Tabeling P, Maurer J, Willaime H (1994) Measurement of the scaling of the dissipation at high Reynolds numbers. Phys Rev E 50:3693–3700. doi:10.1103/PhysRevE.50.3693

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Tanahashi of Tokyo Tech is acknowledged for the DNS data. The first author wishes to acknowledge funding from the Engineering and Physical Sciences Research Council, through a Cambridge University Doctoral Training Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Worth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worth, N.A., Nickels, T.B. & Swaminathan, N. A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data. Exp Fluids 49, 637–656 (2010). https://doi.org/10.1007/s00348-010-0840-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0840-1

Keywords

Navigation