Skip to main content

Near-Wall Study of a Turbulent Boundary Layer Using High-Speed Tomo-PIV

  • Conference paper
  • First Online:
Progress in Wall Turbulence 2

Part of the book series: ERCOFTAC Series ((ERCO,volume 23))

Abstract

The fundamental study of the near-wall structure organization in turbulent flows is crucial to understand the self-generation process of turbulence. To investigate such phenomena, an experiment of high-repetition, 6-camera tomo-PIV in a boundary layer was performed. Vector fields generated from BIMART high-quality reconstructed volumes resulted in low measurement uncertainties. The comparison of turbulence statistics from tomographic PIV and hot-wire anemometer data shows an excellent agreement. Preliminary vortex detection from Q-criterion is presented and allows the identification of dispersed vortices around the low-speed streaks in the boundary layer. Nevertheless an accurate identification of turbulent structures is not yet achieved. The postprocessing is being reviewed and the discussion of the interaction and evolution of turbulent structures will be addressed in a future paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Adrian, C. Meinhart, C. Tomkins, Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Atkinson, J. Soria, An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids 47(4–5), 553–568 (2009)

    Article  Google Scholar 

  3. C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, J. Soria, The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Exp. Fluids 50(4), 1031–1056 (2011)

    Article  Google Scholar 

  4. C. Byrne, Block-iterative algorithms. Int. Trans. Oper. Res. 16(4), 427–463 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Carlier, M. Stanislas, Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535(36), 143–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Chakraborty, S. Balachandar, R. Adrian, On the relationships between local vortex identification schemes. J. Fluid Mech. 535(2005), 189–214 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Discetti, T. Astarita, A fast multi-resolution approach to tomographic PIV. Exp. Fluids 52(3), 765–777 (2012)

    Article  Google Scholar 

  8. G. Elsinga, F. Scarano, B. Wieneke, B.W. van Oudheusden, Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)

    Article  Google Scholar 

  9. J.-M. Foucaut, S. Coudert, M. Stanislas, J. Delville, Full 3D correlation tensor computed from double field stereoscopic PIV in a high Reynolds number turbulent boundary layer. Exp. Fluids 50(4), 839–846 (2011)

    Article  Google Scholar 

  10. J.-M. Foucaut, M. Stanislas, Some considerations on the accuracy and frequency response of some derivative filters applied to PIV vector fields. Meas. Sci. Technol. 13(7), 1058–1071 (2002)

    Article  Google Scholar 

  11. J.-M. Foucaut, S. Coudert, A. Avelar, B. Lecordier, G. Godard, C. Gobin, L. Thomas, P. Braud, L. David, Experiment of high repetition tomographic PIV in a high Reynolds number turbulent boundary layer wind tunnel, in PIV’11—Ninth International Symposium on Particle Image Velocimetry. Kobe, Japan (2011)

    Google Scholar 

  12. D. Garcia, Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010)

    Article  MATH  Google Scholar 

  13. T. Hori, J. Sakakibara, High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids. Meas. Sci. Technol. 15(6), 1067 (2004)

    Article  Google Scholar 

  14. J. Hunt, A. Wray, P. Moin, Eddies, streams, and convergence zones in turbulent flows, in Studying Turbulence Using Numerical Simulation Databases, vols. 1, 2, (1988), pp. 193–208

    Google Scholar 

  15. C.J. Kähler, J. Kompenhans, Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000)

    Google Scholar 

  16. H.G. Maas, A. Gruen, D. Papantoniou, Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993)

    Article  Google Scholar 

  17. F. Martins, J.-M. Foucaut, L. Thomas, L. Azevedo, M. Stanislas, Volume reconstruction optimization for tomo-PIV experimental data, in Final International Workshop on Advanced Flow Diagnostics for Aeronautical Research—AFDAR, Lille, France (2014)

    Google Scholar 

  18. D. Michaelis, M. Novara, F. Scarano, B. Wieneke, Comparison of volume reconstruction techniques at different particle densities, in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal (2010)

    Google Scholar 

  19. R. Moffat, Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1(1), 3–17 (1988)

    Article  Google Scholar 

  20. M. Novara, K. Batenburg, F. Scarano, Motion tracking-enhanced MART for tomographic PIV. Meas. Sci. Technol. 21(3), 35401 (2010)

    Article  Google Scholar 

  21. F. Pereira, M. Gharib, D. Dabiri, D. Modarress, Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp. Fluids 29(1), S078–S084 (2000)

    Google Scholar 

  22. S. Petra, C. Schnörr, A. Schröder, B. Wieneke, Tomographic image reconstruction in experimental fluid dynamics: synopsis and problems, in Mathematical Modelling of Environmental and Life Sciences Problems (2007)

    Google Scholar 

  23. S. Robinson, Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23(1), 601–639 (1991)

    Article  Google Scholar 

  24. F. Scarano, Tomographic PIV: principles and practice. Meas. Sci. Technol. 24(1), 012001 (2013)

    Article  Google Scholar 

  25. F. Scarano, C. Poelma, Three-dimensional vorticity patterns of cylinder wakes. Exp. Fluids 47(1), 69–83 (2009)

    Article  Google Scholar 

  26. U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)

    Article  MATH  Google Scholar 

  27. W. Schoppa, F. Hussain, Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453(1), 57–108 (2002)

    MATH  MathSciNet  Google Scholar 

  28. M. Stanislas, L. Perret, J.-M. Foucaut, Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327–382 (2008)

    Article  MATH  Google Scholar 

  29. L. Thomas, B. Tremblais, L. David, Optimisation of the volume reconstruction for classical tomo-PIV algorithms (MART, BIMART and SMART): synthetic and experimental studies. Meas. Sci. Technol. 25(3), 035303 (2014)

    Article  Google Scholar 

  30. J. Westerweel, F. Scarano, Universal outlier detection for PIV data. Exp. Fluids 39(6), 1096–1100 (2005)

    Article  Google Scholar 

  31. B. Wieneke, Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45(4), 549–556 (2008)

    Article  MATH  Google Scholar 

  32. C. Willert, Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas. Sci. Technol. 8(12), 1465–1479 (1997)

    Article  Google Scholar 

  33. N. Worth, T. Nickels, Acceleration of Tomo-PIV by estimating the initial volume intensity distribution. Exp. Fluids 45(5), 847–856 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out in the frame of the joint supervision of PhD of Fabio Martins held at both PUC-Rio (Brazil) and EC-Lille (France). It was funded by the PUC-Rio and the Brazilian scholarship CAPES grant no. BEX 9249/12-5. The experiment had the financial support of AFDAR European project, ANR Vive3D contract, and CISIT. The tomo-PIV software was developed as a result of the partnership between Pprime (Poitiers), Coria (Rouen), and LML (Lille) laboratories in the frame of the VIV3D ANR project. L. David, B. Tremblais, and P. Braud—from Pprime—and B. Lecordier, G. Godard and C. Gobin—from Coria—are acknowledged for the cooperation in the tomo-PIV software and S. Coudert and A.C. Avelar for the participation in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Stanislas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Martins, F.J.W.A., Foucaut, JM., Azevedo, L.F.A., Stanislas, M. (2016). Near-Wall Study of a Turbulent Boundary Layer Using High-Speed Tomo-PIV. In: Stanislas, M., Jimenez, J., Marusic, I. (eds) Progress in Wall Turbulence 2. ERCOFTAC Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-20388-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20388-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20387-4

  • Online ISBN: 978-3-319-20388-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics