Skip to main content
Log in

Optische Kohärenztomographie-Angiographie in der Intensivmedizin

Ein neues Einsatzgebiet?

Optical coherence tomography angiography in intensive care medicine

A new field of application?

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bei vielen intensivmedizinischen Erkrankungen tritt eine Störung der Mikrozirkulation auf, die bisher noch nicht routinemäßig untersucht werden kann. Für Therapieentscheidungen und Prognoseeinschätzung würde eine Information über die Mikrozirkulation bei kritisch kranken Patienten jedoch von großem Interesse sein. Die optische Kohärenztomographie-Angiographie (OCTA) ermöglicht es, nichtinvasiv, kontaktlos und schnell den Blutfluss in der Mikrozirkulation der Retina darzustellen und hat daher möglicherweise das Potenzial, Störungen der Mikrozirkulation bei kritisch kranken Patienten zu diagnostizieren.

Fragestellung

Folgende Fragestellungen werden betrachtet: Stellenwert der Mikrozirkulation in der Intensivmedizin, Gegenüberstellung der Methoden der Videomikroskopie und der OCTA, Analyse der präklinischen und klinischen Daten zum Einsatz der OCTA bei intensivmedizinischen Krankheitsbildern.

Material und Methode

Es erfolgte eine selektive Literaturrecherche und Analyse der Daten.

Ergebnisse

Eine direkte Darstellung der Mikrozirkulation ist seit Jahren mithilfe der Videomikroskopie möglich, im klinischen Alltag aber aufgrund der Störanfälligkeit und zeitaufwendigen Auswertung nicht etabliert. Die OCTA ist ein nichtinvasives und kontaktloses Verfahren zur Darstellung des retinalen Blutflusses.

Schlussfolgerungen

Die OCTA als nichtinvasives Verfahren ist eine vielversprechende Messmethode, die eine bettseitige Analyse der Mikrozirkulation bei kritisch kranken Patienten zukünftig ermöglichen könnte. Hierzu sind allerdings noch einige technische Einschränkungen zu überwinden.

Abstract

Background

Many critically ill patients show a disturbance of the microcirculation, which is not yet regularly examined in the clinical routine; however, for treatment decisions and estimation of the prognosis it would be important to obtain detailed information about the microcirculation in critically ill patients. Optical coherence tomography angiography (OCTA) is a non-invasive, contact-free technique, which enables visualization of the blood flow in the retinal microcirculation within a few seconds. Therefore, it may have the potential to diagnose microcirculation disorders in critically ill patients.

Objective

The aims of the study were to assess the importance of the microcirculation in intensive care medicine, a comparison of the methods of video microscopy and OCTA and analysis of preclinical and clinical data on the use of OCTA in intensive care medicine.

Material and methods

A selective literature review and data analysis were carried out.

Results

A direct visualization of the microcirculation has been possible for many years with the technique of video microscopy but this has not become established in the clinical routine due to the susceptibility to interferences and a time-consuming manual analysis. The OCTA is a non-invasive and contact-free method for the visualization of retinal blood flow. First preclinical data in septic and hemorrhagic shock show good results of OCTA for analysis of the microcirculation.

Conclusion

The non-invasive technique of OCTA is a promising measurement method to enable bedside analysis of the microcirculation in critically ill paients in the future; however, some technical limitations must still be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Alnawaiseh M, Schubert F, Heiduschka P, Eter N (2017) Optical coherence tomography angiography in patients with retinitis pigmentosa. Retina (Philadelphia, Pa). https://doi.org/10.1097/IAE.0000000000001904

    Article  Google Scholar 

  2. Alnawaiseh M, Brand C, Bormann E, Wistuba J, Eter N, Heiduschka P (2017) Quantitative analysis of retinal perfusion in mice using optical coherence tomography angiography. Exp Eye Res 164:151–156. https://doi.org/10.1016/j.exer.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  3. Alnawaiseh M, Ertmer C, Seidel L, Arnemann PH, Lahme L, Kampmeier T‑G, Rehberg SW, Heiduschka P, Eter N, Hessler M (2018) Feasibility of optical coherence tomography angiography to assess changes in retinal microcirculation in ovine haemorrhagic shock. Crit Care 22(1):138. https://doi.org/10.1186/s13054-018-2056-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Al-Sheikh M, Tepelus TC, Nazikyan T, Sadda SR (2017) Repeatability of automated vessel density measurements using optical coherence tomography angiography. Br J Ophthalmol 101(4):449–452. https://doi.org/10.1136/bjophthalmol-2016-308764

    Article  PubMed  Google Scholar 

  5. Arnemann P‑H, Hessler M, Kampmeier T, Morelli A, van Aken HK, Westphal M, Rehberg S, Ertmer C (2016) Comparison of an automatic analysis and a manual analysis of conjunctival microcirculation in a sheep model of haemorrhagic shock. Intensive Care Med Exp 4(1):37. https://doi.org/10.1186/s40635-016-0110-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Backer D, Creteur J, Preiser J‑C, Dubois M‑J, Vincent J‑L (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166(1):98–104

    Article  PubMed  Google Scholar 

  7. Carsetti A, Aya HD, Pierantozzi S, Bazurro S, Donati A, Rhodes A, Cecconi M (2016) Ability and efficiency of an automatic analysis software to measure microvascular parameters. J Clin Monit Comput. https://doi.org/10.1007/s10877-016-9928-3

    Article  PubMed  Google Scholar 

  8. Cooper LS, Wong TY, Klein R, Sharrett AR, Bryan RN, Hubbard LD, Couper DJ, Heiss G, Sorlie PD (2006) Retinal microvascular abnormalities and MRI-defined subclinical cerebral infarction: the Atherosclerosis Risk in Communities Study. Stroke 37(1):82–86. https://doi.org/10.1161/01.STR.0000195134.04355.e5

    Article  PubMed  Google Scholar 

  9. Dubin A, Henriquez E, Hernández G (2018) Monitoring peripheral perfusion and microcirculation. Curr Opin Crit Care 24(3):173–180. https://doi.org/10.1097/MCC.0000000000000495

    Article  PubMed  Google Scholar 

  10. Eriksson S, Nilsson J, Sturesson C (2014) Non-invasive imaging of microcirculation: a technology review. Med Devices (Auckl) 7:445–452. https://doi.org/10.2147/MDER.S51426

    Article  Google Scholar 

  11. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15(23):15101–15114

    Article  CAS  PubMed  Google Scholar 

  12. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–S19. https://doi.org/10.1186/cc3753

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ince C (2014) The rationale for microcirculatory guided fluid therapy. Curr Opin Crit Care 20(3):301–308. https://doi.org/10.1097/MCC.0000000000000091

    Article  PubMed  Google Scholar 

  14. Ince C (2015) Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 19(Suppl 3):S8. https://doi.org/10.1186/cc14726

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ince C, Boerma EC, Cecconi M, de Backer D, Shapiro NI, Duranteau J, Pinsky MR, Artigas A, Teboul J‑L, Reiss IKM, Aldecoa C, Hutchings SD, Donati A, Maggiorini M, Taccone FS, Hernandez G, Payen D, Tibboel D, Martin DS, Zarbock A, Monnet X, Dubin A, Bakker J, Vincent J‑L, Scheeren TWL (2018) Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. https://doi.org/10.1007/s00134-018-5070-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7):1322–1332. https://doi.org/10.1016/j.ophtha.2014.01.021

    Article  PubMed  Google Scholar 

  17. Lauermann JL, Woetzel AK, Treder M, Alnawaiseh M, Clemens CR, Eter N, Alten F (2018) Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefes Arch Clin Exp Ophthalmol 256(10):1807–1816. https://doi.org/10.1007/s00417-018-4053-2

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Wei W, Wang RK (2018) Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry. Sci Rep 8(1):4107. https://doi.org/10.1038/s41598-018-22513-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14(17):7821–7840

    Article  PubMed  Google Scholar 

  20. Ocak I, Kara A, Ince C (2016) Monitoring microcirculation. Best Pract Res Clin Anaesthesiol 30(4):407–418. https://doi.org/10.1016/j.bpa.2016.10.008

    Article  PubMed  Google Scholar 

  21. Park JR, Kim Y, Park T, Oh W‑Y, Yune H, Lee JH, Jo YH, Kim K (2016) 1423: Microcirculatory alterations in hemorrhagic shock and sepsis with optical coherence tomography. Crit Care Med 44:431. https://doi.org/10.1097/01.ccm.0000510097.67054.8a

    Article  Google Scholar 

  22. Ploner SB, Moult EM, Choi W, Waheed NK, Lee B, Novais EA, Cole ED, Potsaid B, Husvogt L, Schottenhamml J, Maier A, Rosenfeld PJ, Duker JS, Hornegger J, Fujimoto JG (2016) Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable Interscan time analysis. Retina (Philadelphia, Pa) 36(Suppl 1):118–S126. https://doi.org/10.1097/IAE.0000000000001328

    Article  Google Scholar 

  23. Ramos-Estebanez C, Kohen M, Pace J, Bozorgi A, Manjila S, Alambyan V, Nwankwo I, DeGeorgia M, Bambakidis NC, Orge F (2018) Bedside optical coherence tomography for Terson’s syndrome screening in acute subarachnoid hemorrhage: a pilot study. J Neurosurg:1–8. https://doi.org/10.3171/2017.7.JNS171302

    Article  PubMed  Google Scholar 

  24. Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina (Philadelphia, Pa) 35(11):2163–2180. https://doi.org/10.1097/IAE.0000000000000765

    Article  Google Scholar 

  25. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003

    Article  PubMed  Google Scholar 

  26. Spronk PE, Zandstra DF, Ince C (2004) Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 8(6):462–468. https://doi.org/10.1186/cc2894

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tachon G, Harrois A, Tanaka S, Kato H, Huet O, Pottecher J, Vicaut E, Duranteau J (2014) Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med 42(6):1433–1441. https://doi.org/10.1097/CCM.0000000000000223

    Article  PubMed  Google Scholar 

  28. van Elteren HA, Ince C, Tibboel D, Reiss IKM, de Jonge RCJ (2015) Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging. J Clin Monit Comput 29(5):543–548. https://doi.org/10.1007/s10877-015-9708-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang RK, Zhang Q, Li Y, Song S (2017) Optical coherence tomography angiography-based capillary velocimetry. J Biomed Opt 22(6):66008. https://doi.org/10.1117/1.JBO.22.6.066008

    Article  PubMed  Google Scholar 

  30. Yang J, Liu L, Campbell JP, Huang D, Liu G (2017) Handheld optical coherence tomography angiography. Biomed Opt Express 8(4):2287–2300. https://doi.org/10.1364/BOE.8.002287

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hessler.

Ethics declarations

Interessenkonflikt

M. Hessler, F. Lehmann, P.-H. Arnemann, N. Eter, C. Ertmer und M. Alnawaiseh geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Autoren Dr. med. Michael Hessler und Dr. med. Florian Lehmann haben zu gleichen Teilen zum Manuskript beigetragen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hessler, M., Lehmann, F., Arnemann, PH. et al. Optische Kohärenztomographie-Angiographie in der Intensivmedizin. Ophthalmologe 116, 728–734 (2019). https://doi.org/10.1007/s00347-019-0893-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-019-0893-3

Schlüsselwörter

Keywords

Navigation