Skip to main content

Advertisement

Log in

Co-inoculation Effects of Rhizobium sullae and Pseudomonas sp. on Growth, Antioxidant Status, and Expression Pattern of Genes Associated with Heavy Metal Tolerance and Accumulation of Cadmium in Sulla coronaria

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Recently, phytoremediation assisted by soil bacteria has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Three plant-growth-promoting bacteria (PGPBs): Rhizobium sullae, Pseudomonas fluorescens, and Pseudomonas sp. were found to tolerate cadmium (Cd) stress. Sulla coronaria inoculated with these PGPBs, and grown under different Cd concentrations (0, 100, and 200 µM), showed increases in dry biomass and proline content. Notable increases in different gas-exchange characteristics such as photosynthesis rate (A), transpiration rate (E), and water-use efficiency (WUE), as well as increases in nitrogen (N) and Cd accumulations were also recorded in inoculated plants compared to non-inoculated Cd stressed plants. The activities of antioxidant enzymes superoxide dismutase (SOD), guaiacol peroxidase (GPOX), catalase (CAT), and ascorbate peroxidase (APX) in S. coronaria roots increased under Cd stress after PGPB co-inoculation, suggesting that these PGPB species could be used for amelioration of stress tolerance in S. coronaria. The expression patterns of ScPCS, ScMT, ScF-box, ScGR, and ScGST in roots of S. coronaria indicated that these genes are differentially expressed under Cd treatments, suggesting their possible roles in Cd and heavy metal stress responses. The results indicate that co-inoculation with R. sullae and Pseudomonas sp. could alleviate Cd toxicity in S. coronaria. In the present study, the obtained data suggest that the application of PGPBs could be a promising strategy for enhancing the phytostabilization efficiency of Cd-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DAS:

Days after sowing

DW:

Dry weight

EDTA:

Ethylene diamine tetra-acetic

FAAS:

Flame atomic absorption spectrophotometer

FW:

Fresh weight

IAA:

Indole acetic acid

ICP–MS:

Inductively coupled plasma/mass spectrometry

GSH:

Gluthatione

GSSG:

Gluthatione disulfure

GPOX:

Guaiacol peroxidase

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

PGPB:

Plant-growth-promoting bacteria

PGPR:

Plant-growth-promoting rhizobacteria

PMSF:

Phenylmethylsulfonyl fluoride

PVP:

Polyvinylpyrrolidone

RDW:

Root dry weight

ROS:

Reactive oxygen species

SDW:

Shoot dry weight

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

YEM:

Yeast extract medium

References

  • Adamis PDB, Gomes DS, Pinto MLCC, Panek AD, Eleutherio ECA (2004) The role of glutathione transferases in cadmium stress. Toxicol Lett 154:81–88

    CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Ahemad M (2014) Remediation of metalliferous soils through the heavy metal plant growth promoting bacteria: paradigms and prospects. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.020

    Article  Google Scholar 

  • Amako K, Chen GX, Asada K (1994) Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol 35:497–504

    CAS  Google Scholar 

  • Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozymes profiles of catalase, peroxidase and gluthatione reductase during acclimation to chilling in mesocotyls of maize seedling. Plant Physiol 109:1247–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insight into antioxidant defenses of legume root nodules. New Phytol 188:960–976

    CAS  PubMed  Google Scholar 

  • Becerril JM, Gonzalez-Murua C, Munoz-Rueda A, De Felipe MR (1989) Changes induced by cadmium and lead in gas exchange and water relations of clover and lucerne. Plant Physiol Biochem 27:913–918

    CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilising the principal of protein dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Burdman S, Kigel J, Okon Y (1997) Effect of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    CAS  Google Scholar 

  • Carson RW, Bazzaz FA, Rolfe GL (1975) The effect of heavy metals on plants. II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni and Tl. Environ Res 10:113–120

    Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    CAS  Google Scholar 

  • Chen R, Guo W, Yin Y, Gong ZH (2014) A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). Int J Mol Sci 15:2413–2430

    PubMed  PubMed Central  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798

    CAS  PubMed  Google Scholar 

  • Chiboub M, Saadani O, Fatnassi CI, Souhir A, Jebara M, Harzalli Jebara S (2016) Characterization of plant growth promoting rhizobacteria efficient and resistant to cadmium isolated from Sulla coronaria. C R Biologies 339(9–10):391–398

    PubMed  Google Scholar 

  • Chiboub M, Jebara SH, Saadani O, Fatnassi CI, Abdelkerim S, Jebara M (2018) Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. J Plant Res 131(1):99–110

    CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    CAS  PubMed  Google Scholar 

  • Dong J, Wu F, Zhang G (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Univ Sci 6:974–980

    Google Scholar 

  • Farago ME, Mullen WA (1979) Plants which accumulate metals. IV. A possible copper–proline complex from the roots of Armeria maritima. Chim Acta 32:93–94

    Google Scholar 

  • Fatnassi CI, Chiboub M, Saadani O, Jebara M, Harzalli Jebara S (2013) Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. J Basic Microbiol 53:1–9

    Google Scholar 

  • Fatnassi CI, Chiboub M, Jebara M, Jebara HS (2014) Bacteria associated with different legume species grown in heavy-metal contaminated soils. Int J Agric Policy Res 2:460–467

    Google Scholar 

  • Fatnassi CI, Chiboub M, Saadani O, Jebara M, Jebara HS (2015) Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. J Bas Microbiol 55:303–311

    CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2013) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33-46

    CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    CAS  PubMed  Google Scholar 

  • Gogorcena Y, Gordon A, Escuredo PR, Minchin FR, Witty JF, Moran JF, Becana M (1997) N2 fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiol 113:1193–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez SMT, Marino D (2015) PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation. Front Plant Sci 6:81. https://doi.org/10.3389/fpls.2015.00081

    Article  Google Scholar 

  • Guo J, Xu L, Su Y, Wang H, Gao S, Xu J, Que Y (2013) ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int. https://doi.org/10.1155/2013/904769

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Garg V, Kant C, Bhatia S (2015) Genome-wide survey and expression analysis of F-box genes in chickpea. BMC Genom. https://doi.org/10.1186/s12864-015-1293-y

    Article  Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azatebactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. P J Bot 42:4363–4370

    Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    CAS  PubMed  Google Scholar 

  • Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytorem 16:179–202

    CAS  Google Scholar 

  • Harzalli Jebara S, Abdelkerim S, Challougui Fatnassi I, Chiboub M, Saadani O, Jebara M (2015a) Identification of effective Pb resistant bacteria isolated from Lens culinaris growing in lead contaminated soils. J Basic Microbiol 55:346–353

    Google Scholar 

  • Harzalli Jebara S, Saadani O, Challougui Fatnassi I, Chiboub M, Abdelkerim S, Jebara M (2015b) Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. Environ Sci Pollut Res 22:2537–2545

    Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    CAS  PubMed  Google Scholar 

  • Hoque MA, Uraji M, Banu MN, Mori IC, Nakamura Y, Murata Y (2010) The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum. Biosci Biotechnol Biochem 74(10):2124–2126

    CAS  PubMed  Google Scholar 

  • Imam S (2017) Phytoremediation: a green method to combat environmental pollution. IJESR T 6:418–421

    CAS  Google Scholar 

  • Iruthayathas EE, Gunasekaran S, Vlassak K (1983) Effect of combined inoculation of Azospirillum and Rhizobium on nodulation and N2 fixation of winged bean and soybean. Sci Hortic 20:231–240

    Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, Hussain S, Riaz M, Abbas F (2015) Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environ Sci Pollut Res 23(1):220–233

    Google Scholar 

  • Jabbar BKA, Saud HM (2012) Effects of molybdenum on biological nitrogen fixation by combination of Rhizobium and Azospirillium in soybean under drip irrigation system. Int J Life Sci Bt Pharm Res 1:63

    Google Scholar 

  • Jebara S, Drevon JJ, Jebara M (2010) Modulation of symbiotic efficiency and nodular antioxidant enzyme activities in two Phaseolus vulgaris genotypes under salinity. Acta Physiol Plant 32:925–932

    Google Scholar 

  • Jia F, Wu B, Li H, Huang J, Zheng C (2013) Genome-wide identification and characterisation of F-box family in maize. Mol Genet Genom 288:559–577

    CAS  Google Scholar 

  • Kisa D, Öztürk L, Doker S, Gökçe I (2017) Expression analysis of metallothioneins and mineral contents in tomato (Lycopersicon esculentum) under heavy metal stress. J Sci Food Agric 97:1916–1923

    CAS  PubMed  Google Scholar 

  • Liu Z, Gu C, Chen F, Yang D, Wu K, Chen S, Jiang J, Zhang Z (2012) Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl Biochem Biotechnol 166:722–734

    CAS  PubMed  Google Scholar 

  • Louis K B (2009) Heavy metals levels in lichens, soils, sediments and water bodies of teberebie and its environmental impact.” Msc. Thesis, Ghana pp. 23

  • Ma Y, Prasad MNV, Rajkumar M, Freita H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    CAS  PubMed  Google Scholar 

  • Monteiro MS, Santos C, Soares AMVM, Mann RM (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf 72:811–818

    CAS  PubMed  Google Scholar 

  • Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16:17975–17998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muradoglu F, Gundogdu M, Ercisli S, Encu T, Balta F, Jaafar HZE, Zia-Ul-Haq M (2015) Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res 48(1):11

    PubMed  PubMed Central  Google Scholar 

  • Ovečka M, Takáč T (2013) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32(1):71–86

    Google Scholar 

  • Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. Bioremediat Biodegrad 7:2. https://doi.org/10.4172/2155-6199.1000334

    Article  CAS  Google Scholar 

  • Pajuelo E, Rodriguez-Llorente D, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium- Medicago sativa symbiotic interaction. Envir Pol 154:203–211

    CAS  Google Scholar 

  • Pandey N, Singh GK (2012) Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum). J Environ Biol 33:201–206

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Ruisi P, Siragusa M, Di Giorgio G, Graziano D, Amato G, Carimi F, Giambalvo D (2011) Pheno-morphological, agronomic and genetic diversity among natural populations of sulla (Hedysarum coronarium L.) collected in Sicily. Italy. Genet Resour Crop Evol 58:245–257

    Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482

    CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  • Sereno ML, Almeida RS, Nishimura DS, Figueira A (2007) Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes. J Plant Physiol 164:1499–1515

    CAS  PubMed  Google Scholar 

  • Shamsul H, Qaiser H, Mohammed Nasser A, Arif Shafi W, John P, Aqil A (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466

    Google Scholar 

  • Sigfridsson KGV, Bernát G, Mamedov F, Styring S (2004) Molecular interference of Cd +2 with photosystem II. Biochim Biophys Acta 1659:19–31

    CAS  PubMed  Google Scholar 

  • Slim S, Ben Jeddi F, Marouani A, Bouajila K (2012) Caractéristiques herbagères de la culture du Sulla (Hedysarum coronarium L.) en régions montagneuses du Nord de la Tunisie. J Anim Plant Sci 13(3):1831–1847

    Google Scholar 

  • Smirnoff N, Quinton J, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060

    CAS  Google Scholar 

  • Song JB, Wang YX, Li HB, Li BW, Zhou ZS, Gao S, Yang ZM (2015) The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Funct Integr Genom 15:495–507

    CAS  Google Scholar 

  • Vadez V, Rodier F, Payre H, Drevon JJ (1996) Nodule permeability to O2 and nitrogenase linked respiration in bean landraces varying in the tolerance of N2 fixation to P deficiency. Plant Physiol Biochem 34:871–878

    CAS  Google Scholar 

  • Vincent JM (1970) A manual for practical study of root nodule bacteria. IBP Handbook No. 15. Blackwell Scientific Publishers, Oxford, p 164

    Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant–microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Zhao X, Scu X, Tang Q, Nie Z, Qu C, Chen Z, Hu C (2015) Antioxidant enzyme systems and the ascorbate–glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere 138:526–536

    CAS  PubMed  Google Scholar 

  • Xiong YH, Yang XE, Ye ZQ (2004) Comparing the characteristics of growth response and accumulation of cadmium and lead by Sedum alfredii Hance. J Northwest Sci Tech Univ Agri For 32:101–106

    Google Scholar 

  • Yi M, Yi H, Li H, Wu L (2010) Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. Environ Toxicol 25:124–129

    CAS  PubMed  Google Scholar 

  • Yu Q, Rengel Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutase in narrow-neafed lupins. Ann Bot 83:175–182

    CAS  Google Scholar 

  • Zhang H, Xu W, Guo J, He Z, Ma M (2005) Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Sci 169:1059–1065

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1171

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Dr Yordan Muhovski, PhD (Walloon Agricultural Research Centre CRA-W Department of Life Sciences. Gembloux, Belgium) for English edition; the Laboratory of Legumes, Biotechnology Center of Borj-Cedria (CBBC); and the Tunisian Ministry of Higher Education and Scientific Research for securing the funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Jebara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiboub, M., Jebara, S.H., Abid, G. et al. Co-inoculation Effects of Rhizobium sullae and Pseudomonas sp. on Growth, Antioxidant Status, and Expression Pattern of Genes Associated with Heavy Metal Tolerance and Accumulation of Cadmium in Sulla coronaria. J Plant Growth Regul 39, 216–228 (2020). https://doi.org/10.1007/s00344-019-09976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09976-z

Keywords

Navigation