Skip to main content
Log in

New Techniques for the Estimation of Naturally Occurring Brassinosteroids

  • NOVEL TECHNIQUES
  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We have developed enzyme-linked immunosorbent assays (ELISAs) for measuring 24-epicastasterone and related brassinolide analogs, with detection ranges of 0.005 to 50 pmoles. Polyclonal antibodies used in these assays were raised against 24-epicastasterone carboxymethyloxime-bovine serum albumin conjugates and were found to have high specificity for 24-epibrassinosteroids. Natural brassinosteroids (BRs), such as brassinolide and 24-epibrassinolide, exhibited relatively high cross-reactivities with the generated antibodies, whereas other BR analogs with β-oriented hydroxyl groups at C-2, C-3, C-22, and C23 lacked immunoreactivity. Through the use of internal standardization, dilution assays, recovery of authentic [3H]24-epicastasterone, and immunohistograms, the ELISAs have been shown to be applicable for estimating 24-epibrassinosteroid levels in crude plant extracts. To analyze brassinosteroids in tissues from young bean (Phaseolus vulgaris L., cv. Pinto), Daucus carota ssp.sativus plants and Arabidopsis thaliana L. Heynh. seedlings, and rape (Brassica napus L.) pollen, the extracts were fractionated by high performance liquid chromatography (HPLC) and the resulting fractions were analyzed by the ELISA method. Immunohistogram ELISA analysis of HPLC fractions indicated that major peaks of immunoreactivity co-chromatographed with the labeled and unlabeled 24-epibrassinolide. A highly sensitive electrospray ionization mass spectrometry (MS) technique (LOD: 50 fmol) was also developed and the results obtained by the HPLC-ELISA and HPLC-MS approaches were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adam G, Porzel A, Schnidt J, Schneider B, Voight B. 1996. New developments in brassinosteroid research. In Rahman A, editor. Studies in Natural Product Chemistry. Elsevier Science, Amsterdam, The Netherlands, pp. 495–549

    Google Scholar 

  • Badenoch-Jones J, Letham DS, Parker CW, Rolf BG. 1984. Quantification of cytokinins in biological samples using antibodies against zeatin riboside. Plant Physiol 75:1117–1125

    PubMed  CAS  Google Scholar 

  • Díaz-Cruz S, Lopez de Alda M, Lopez R, Barcelo D. 2003. Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). J Mass Spectrom 38:917–923

    Article  PubMed  CAS  Google Scholar 

  • Drosihn S, Porzel A, Brandt W. 2001. Determination of preferred conformations of brassinosteroids by means of NMR investigations and Boltzmann stastistical analysis of simulated annealing calculations. J Mol Model 7:34–42

    Article  CAS  Google Scholar 

  • Erlanger BF. 1967. The preparation of steroid-protein conjugates to elicit antihormonal antibodies. Methods Immunol Immunochem 1:144–150

    Google Scholar 

  • Fujioka S. 1999. Natural occurence of brassinosteroids in the plant kingdom. In Sakurai A, Yokota T, Clouse SD, editors. Brassinosteroids: Steroidal Plant Hormones. Springer Verlag, Tokyo, Japan, pp. 21–45

    Google Scholar 

  • Gamoh K, Takatsuto S. 1989a. A new boronic acid derivative as a highly sensitive fluorescence derivatization reagent for brassinosteroids in liquid chromatography. Anal Chim Acta 222:201–204

    Article  CAS  Google Scholar 

  • Gamoh K, Takatsuto S. 1994. Liquid chromatography assay of brassinosteroids in plants. J Chromatogr A 658:17–25

    Article  CAS  Google Scholar 

  • Gamoh K, Kitsuwa T, Takatsuto S, et al. 1988. Determination of trace brassinosteroids by HPLC. Anal Sci 4:533–535

    CAS  Google Scholar 

  • Gamoh K, Omote K, Okamoto N, et al. 1989b. HPLC of brassinosteroids in plants with derivatization using 9-phenanthreneboronic acid. J Chromatogr 469:424–428

    Article  CAS  Google Scholar 

  • Gamoh K, Okamoto N, Takatsuto S, et al. 1990a. Determination of traces of natural brassinosteroids as a dansylaminophenylboronates by LC fluorometric detection. Anal Chim Acta 228:101–105

    Article  CAS  Google Scholar 

  • Gamoh K, Sawamoto H, Takatsuto S, et al. 1990b. Ferrocene boronic acid as a derivatization reagent for the determination of brassinosteroids by HPLC with electrochemical detection. J Chromatogr 515:227–231

    Article  CAS  Google Scholar 

  • Gamoh K, Takatsuto S, Ikekawa N. 1992. Effective separation of C-24-epimeric brassinosteroids by LC. Anal Chim Acta 256:319–322

    Article  CAS  Google Scholar 

  • Gamoh K, Yamaguchi I, Takatsuto S. 1994. Rapid and selective sample preparation for the chromatographic determination of brassinosteroids from plant material using solid-phase extraction method. Anal Sci 10:913–917

    CAS  Google Scholar 

  • Gamoh K, Abe H, Shimada K, et al. 1996. LC/MS with atmospheric pressure chemical ionization of free brassinosteoids. Rapid Commun Mass Spectrom 10:903–906

    Article  CAS  Google Scholar 

  • Gross H, Bilk L. 1968. Zur reaktion von N- hydroxysuccinimide mit dicyklohexylcarbodiimid. Tetrahedron 24:6935–6939

    Article  CAS  Google Scholar 

  • Grove MD, Spencer FG, Rohwedder WK, Mandava NB, et al. 1979. Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Harlow E, Lane D. 1988. Antibodies—A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 726 pp

    Google Scholar 

  • Horgen PA, Nakagawa CH, Irvin RT. 1984. Production of monoclonal antibodies to steroidal plant growth regulator. Can Biochem Cell Biol 62:715–721

    Article  CAS  Google Scholar 

  • Jones HG. 1987. Correction for nonspecific interference in competitive immunoassays. Physiol Plant 70:146–154

    Article  CAS  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Altmann T. 1997. Molecular/genetic analysis of brassinosteroid synthesis and action. Proc Plant Growth Regul Soc Am 24:95–96

    Google Scholar 

  • Khripach VA, Zhabinski V, de Groot AE. 1999. A New Class of Plant Hormones. Academic Press, San Diego, CA, USA, 456 pp

    Google Scholar 

  • Kohout L., 1994. New method of preparation of brassinosteroids. Coll Czech Chem Commun 59:457–460

    Article  CAS  Google Scholar 

  • Konstantinova VO, Antonchic AP, Zhabinskii VN, Khripach V, Schneider B. 2001. Analysis of underivatized brassinosteroids by HPLC/APCI-MS. Occurrence of 3-epibrassinolide in Arabidopsis thaliana. Collect Czech Chem Commun 66:1729–1734

    Article  CAS  Google Scholar 

  • Kuronen P, Vaananen T, Pehu E. 1999. Reversed-phase liquid chromatographic separation and simultaneous profiling of steroidal glycoalkaloids and their aglycones. J Chromatogr A 25:25–35

    Article  Google Scholar 

  • Ma Y-Ch, Kim H-Y. 1997. Determination of steroids by LC/MS. J Am Soc Mass Spectrom 8:1010–1020

    Article  CAS  Google Scholar 

  • Motegi C, Takatsuto S, Gamoh K. 1994. Identification of brassinolide and castasterone in the pollen of orange (Citrus sinensis) by HPLC. J Chromatogr A 658:27–30

    Article  CAS  Google Scholar 

  • Nomura T, Nakayama M, Reid JB. 1997. Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113:31–37

    PubMed  CAS  Google Scholar 

  • Nomura T, Sato T, Bishop JG, et al. 2001. Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry 57:171–178

    Article  PubMed  CAS  Google Scholar 

  • Novák O, Tarkowski P, Tarkowská D, Lenobel R, Doležal K, Strnad M. 2003. Quantitative analysis of cytokinins in plants by LC–MS. Anal Chim Acta 480:207–218

    Article  CAS  Google Scholar 

  • O’Sullivan MJ. 1979. Enzyme immunoassay: a review. Anal Biochem 210:145–154

    Google Scholar 

  • Park KH, Yokota T, Sakurai A, Takahashi N. 1987. Occurrence of castasterone, brassinolide and methyl 4-chloroindole 3-acetate in immature Vicia faba seeds. Agric Biol Chem 54: 3081–3086

    Google Scholar 

  • Pengelly WJ. 1986. Validation of radioimmunoassay for IAA using gas-chromatography-selected ion monitoring-mass-spectrometry. In Bopp M, editor, Plant Growth Substances, Springer-Verlag, Heidelberg, Germany, pp. 35–43

    Google Scholar 

  • Pengelly WJ, Meins F. 1977. The relationship of indole-3-acetic acid content and growth of crown-gall tumor tissues of tobacco in culture. Planta 136:173–180

    Article  CAS  Google Scholar 

  • Prinsen E, Van Dongen W, Esmans E, Van Onckelen H. 1997. HPLC linked electrospray tandem mass spectrometry: a rapid and reliable method to analyse indole-3-acetic acid metabolism in bacteria. J Mass Spectrom 32:12–22

    Article  CAS  Google Scholar 

  • Prinsen E, Van Dongen W, Esmans E, Van Onckelen H. 1998. Micro and capillary liquid chromatography tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A 826:25–37

    Article  CAS  Google Scholar 

  • Sakurai A. 1999. Brassinosteroid biosynthesis. Plant Physiol Biochem 37:351–361

    Article  CAS  Google Scholar 

  • Sasse J. 1999. Physiological actions of brassinosteroids In Sakurai A, Yokota T, Clouse SD, editors, Brassinosteroids: Steroidal Plant Hormones. Springer-Verlag, Tokyo, Japan, pp. 219–262

    Google Scholar 

  • Satake K. 1960. The spectrophotometric determination of amine, amino acid an peptide with 2,4,6-trinitrobenzene 1-sulfonic acid. J Biochem 47:654–660

    CAS  Google Scholar 

  • Schlagnhaufer CD, Arteca RN. Phillips AT. 1991. Induction of anti-brassinosteroid antibodies. J Plant Physiol 38:404–410

    Google Scholar 

  • Schlüsener MP, Bester K. 2005. Determination of steroid hormones, hormone conjugates and macrolide antibiotics in influents and effluents of sewage treatment plants utilising high-performance liquid chromatography/tandem mass spectrometry with electrospray and atmospheric pressure chemical ionisation. Rapid Commun Mass Spectrom 19:3269–78

    Article  PubMed  CAS  Google Scholar 

  • Schmidt J, Spengler B, Yokota T, Adam G. 1993. The co-occurrence of 24-epicastasterone and castasterone in seeds of Ornithopus sativus. Phytochemistry 32:1614–1615

    Article  CAS  Google Scholar 

  • Schmidt J, Kuhnt C, Adam G. 1994. Brassinosteroids and sterols from seeds of Beta vulgaris. Phytochemistry 36:175–177

    Article  CAS  Google Scholar 

  • Schmidt J, Himmelreich U, Adam G. 1995. Brassinosteroids, sterols and lup-20(29)-en-2α,3β,28-triol from Rheum rhababarum. Phytochemistry 40:527–531

    Article  CAS  Google Scholar 

  • Schmidt J, Altmann T, Adam G. 1997. Brassinosteroids from seeds of Arabidopsis thaliana. Phytochemistry 45:1325–1327

    Article  PubMed  CAS  Google Scholar 

  • Schmidt J, Porzel A, Adam G. 1998. Brassinosteroids and a pregnane glucoside from Daucus carote. Phytochem Anal 9:14–22

    Article  CAS  Google Scholar 

  • Shimada K, Mitamura K, Higashi T. 2001. Gas chromatography and high performance liquid chromatography of natural steroids. J Chromatogr A 935:141–172

    Article  PubMed  CAS  Google Scholar 

  • Stoldt M, Porzel A, Adam G, Brandt W. 1997. Side chain conformation of the growth-promoting phytohormones brassinolide and 24-epibrassinolide. Magn Reson Chem 35:629–636

    Article  CAS  Google Scholar 

  • Strnad M, Hanus J, Vanek T, Kaminek M, Ballantine JA, Fussell B, Hanke DE. 1997. Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench, cv Robusta). Phytochemistry 45:213–218

    Article  CAS  Google Scholar 

  • Strnad M, Vereš K, Hanuš J, Siglerová V. 1992a. Immunological methods for quantification and identification of cytokinins. In Kamínek M, Mok DWS, Zažímalová E, editors, Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishers, The Hague, The Netherlands, pp. 437–446

    Google Scholar 

  • Strnad M, Peters W. Beck E, Kamínek M. 1992b. Immunodetection and identification of N6-(o-hydroxybenzylamino)purine as a naturally occurring cytokinin in Populus × canadensis Moench cv Robusta leaves. Plant Physiol 99:74–80

    Article  CAS  Google Scholar 

  • Svatoš A, Antonchick A, Schneider B. 2004. Determination of brassinosteroids in the sub-femtomolar range using dansyl-3-aminophenylboronate derivatization and electrospray mass spectrometry. Rapid Commun Mass Spectrom 18:816–821

    Article  PubMed  CAS  Google Scholar 

  • Swaczynová J, Šíša M. Hniličková J, Kohout L, Strnad M. 2006. Synthesis, biological, immunological and anticancer properties of a new brassinosteroid ligand. Polish J Chem 80:629–635

    Google Scholar 

  • Šíša M. 2005. New Brassinosteroids Analogues, PhD. Thesis, Charles University, Prague

  • Van Aerden C. Debrauwer L, Tabet JC. 1998. Analysis of nucleoside-estrogen adducts by LC-ESI-MS–MS. Analyst 123:2677–2680

    Article  Google Scholar 

  • Van Rhijn JA, Heskamp HH, Davelaar E, Jordi W, Leloux MS, et al. 2001. Quantitative determination of glycosylated and aglycon isoprenoid cytokinins at sub-picomolar levels by microcolumn LC combined with electrospray tandem mass spectrometry. J Chromatogr A 929:31–40

    Article  Google Scholar 

  • Takatsuto S. 1991. Microanalysis of naturally occuring brassinosteroids. In Cutler HG, Yokota T, Adam G, editors, Brassinosteroids: Chemistry, Bioactivity, and Applications, ACS Symp Ser 474. American Chemical Society, Washington, DC, USA, pp.1391–1397

    Google Scholar 

  • Weiler EW 1982. An enzyme-immunoassay for cis-(+)-abscisic acid. Physiol Plant 54:51–514

    Google Scholar 

  • Yokota T, Watanabe S, Ogino Y. 1990. Radioimmunoassay for brassinosteroids and its use for comparative analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. J Plant Growth Regul 9:151–159

    Article  CAS  Google Scholar 

  • Yokota T, Arima M, Takahashi N. 1982. Castasterone, a new phytosterol with plant-hormone potency, from chestnut insect gall. Tetrahedron Lett 23:1275–1278

    Article  CAS  Google Scholar 

  • Yokota T, Kim SK, Fukui Y, Tekematsu T. 1987. Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: configuration at C-24. Phytochemistry 26:503–506

    Article  CAS  Google Scholar 

  • Yokota T, Baba J, Koba S. 1984. Purification and separation of eight steroidal plant-growth regulators from Dolichos lablab seed. Agric Biol Chem 48:2529–2534

    CAS  Google Scholar 

  • Yokota T, Nomura T, Nakayama M. 1997. Identification of brassinosteroids that appear to be derived from campesterol and cholesterol in tomato shoots. Plant Cell Physiol 38:1291–1294

    CAS  Google Scholar 

  • Zullo MAT, Kohout L, de Azevedo MBM. 2003. Some notes on terminology of brassinosteroids. Plant Growth Regul 39:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jarmila Balonová for excellent technical assistance. We would also like to thank Sees-editing Ltd. (http://www.sees-editing Ltd.) for the excellent editing of this manuscript. This work was supported by a grant from the Czech Ministry of Education (No. MSM 6198959216, LCO 6034, Z406605061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Strnad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaczynová, J., Novák, O., Hauserová, E. et al. New Techniques for the Estimation of Naturally Occurring Brassinosteroids. J Plant Growth Regul 26, 1–14 (2007). https://doi.org/10.1007/s00344-006-0045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-006-0045-2

Keywords

Navigation