Skip to main content
Log in

The Genetic Reprogramming of Polyamine Homeostasis During the Functional Assembly, Maturation, and Senescence-Specific Decline of the Photosynthetic Apparatus in Hordeum vulgare

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Polyamines (PAs) are ubiquitous aliphatic amines important and, in many cases, essential for plant growth, abiotic stress response, and tolerance. Here we provide evidence for genetic reprogramming of PA homeostasis that occurs during the de-etiolation, maturation, and senescence of the primary leaf in Hordeum vulgare (barley). We analyzed expression levels of key genes in the anabolic and catabolic branches of PA metabolism throughout the life cycle of etioplasts, at all steps of the functional assembly of the photosynthetic apparatus, and during leaf senescence. The changes in the total PAs titer of the leaf were followed throughout the different developmental stages. Furthermore, we align all three stages of the photosynthetic performance (rapid light-dependent de-etiolation, phase of optimal efficiency, and senescence-induced deterioration) with the changes in PA homeostasis. Finally, we focus on two phases during aging (early and late senescence) and we present their bioenergetic (for example, PSII maximal efficiency, ATPase conductivity) and genetic profiles, with emphasis on sensitive parameters that describe this process for the photosynthetic apparatus and PA metabolism, respectively. In conclusion, the fine tuning of PA homeostasis is regulated by the simultaneous genetic reprogramming of the anabolic and catabolic branches of PA metabolism and adjusts all the developmental changes from de-etiolation to maturation and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreadakis A, Kotzabasis Κ (1996) The role of polyamines in the chloroplast photodevelopment. Changes in the biosynthesis and catabolism of the polyamines in isolated plastids during the chloroplast photodevelopment. J Photochem Photobiol B33:163–170

    Article  Google Scholar 

  • Antognoni F, Fornale S, Grimma C, Komor E, Bagni N (1998) Long distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta 204:520–527

    Article  CAS  Google Scholar 

  • Barth O, Vogt S, Uhlemann R, Zschiesche W, Humbeck K (2009) Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol 69:213–226

    Article  CAS  PubMed  Google Scholar 

  • Beauchemin R, Gauthier A, Harnois J, Boisvert S, Govindachary S, Carpentier R (2007) Spermine and spermidine inhibition of photosystem II: disassembly of the oxygen evolving complex and consequent perturbation in electron donation from TyrZ to P680+ and the quinone acceptors QA- to QB. Biochim Biophys Acta 1767:905–912

    Article  CAS  PubMed  Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206

    Article  CAS  Google Scholar 

  • Boffey S, Selldén G, Leech R (1980) Influence of cell age on chlorophyll formation in light-grown and etiolated wheat seedlings. Plant Physiol 65:680–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borrell A, Culianez-Macià FA, Altabella T, Besford RT, Flores D, Tiburcio AF (1995) Arginine decarboxylase is localized in chloroplasts. Plant Physiol 109:771–776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caffaro SV, Scaramagli S, Antognoni F, Bagni N (1993) Polyamine content and translocation in soyabean plants. J Plant Physiol 41:563–568

    Article  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:187–194

    Article  Google Scholar 

  • Cohen SS (1998) A guide to the polyamines. Oxford University Press, New York

  • Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R (2003) Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol 131:803–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Del Duca S, Tidu V, Bassi R, Esposito C, Serafini-Fracassini D (1994) Identification of chlorophyll-a/b proteins as substrates of transglutaminase activity in isolated chloroplasts of Helianthus tuberosus. Planta 193:283–289

    Article  Google Scholar 

  • Dresselhaus T, Barcelo P, Hagel C, Lörz H, Humbeck K (1996) Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock-regulated. Plant Mol Biol 30:1021–1033

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have a role in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Galston AW (2001) Plant biology—retrospect and prospect. Curr Sci 80:150–152

    Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol (Stuttg) 10:37–49

    Article  CAS  Google Scholar 

  • Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174:681–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holloway PJ, Maclean DJ, Scott KJ (1983) Rate-limiting steps of electron transport in chloroplasts during ontogeny and senescence of barley. Plant Physiol 72:795–801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Hu WW, Gong H, Pua EC (2005) The pivotal roles of the plant S-adenosylmethionine decarboxylase 5′ untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiol 138:276–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Humbeck K, Krupinska K (2003) The abundance of minor chlorophyll a/b-binding proteins CP29 and LHCI of barley (Hordeum vulgare L.) during leaf senescence is controlled by light. J Exp Bot 54:375–383

    Article  CAS  PubMed  Google Scholar 

  • Humbeck K, Quast S, Krupinska K (1996) Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ 19:337–344

    Article  CAS  Google Scholar 

  • Inada N, Sakai A, Kuroiwa H, Kuroiwa T (1998) Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles. Investigations of tissues and cells by fluorescence microscopy. Planta 205:153–164

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis ΝΕ, Kotzabasis Κ (2007) The effects of the polyamines on the functionality of the photosynthetic membrane in vivo and in vitro. Biochim Biophys Acta 1767:1372–1382

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Sfichi L, Kotzabasis K (2006) Putrescine stimulates chemiosmotic ATP synthesis. Biochim Biophys Acta 1757:821–828

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Ortigosa S, Veramendi J, Pintó-Marijuan M, Fleck I, Carvajal P, Kotzabasis K, Santos M, Torné JM (2009) Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. Biochim Biophys Acta 1787:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Cruz JA, Kotzabasis K, Kramer DM (2012) Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS One 7:e29864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jumtee K, Bamba T, Okazawa A, Fukusaki E, Kobayashi A (2008) Integrated metabolite and gene expression profiling revealing phytochrome a regulation of polyamine biosynthesis of Arabidopsis thaliana. J Exp Bot 59:1187–1200

    Article  CAS  PubMed  Google Scholar 

  • Kahana C (2009) Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 66:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He LX, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  CAS  PubMed  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kotzabasis K, Christakis-Hampsas MD, Roubelakis-Angelakis KA (1993) A narrow bore HPLC method for the identification and quantitation of free, conjugated and bound polyamines. Anal Biochem 214:484–489

    Article  CAS  PubMed  Google Scholar 

  • Krupinska K (2006) Fate and activities of plastids during leaf senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Amsterdam, pp 433–449

    Chapter  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Laurenzi M, Rea G, Federico R, Tavladoraki P, Angelini R (1999) De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesocotyl: a role in the photomodulation of growth and cell wall differentiation. Planta 208:146–154

    Article  CAS  Google Scholar 

  • Legocka J, Zajchert I (1999) Role of spermidine in the stabilization of the apoprotein of the light-harvesting chlorophyll a/b-protein complex of photosystem II during leaf senescence process. Acta Physiol Plant 21:127–132

    Article  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    Article  CAS  PubMed  Google Scholar 

  • Lütz C (1986) Prolamellar bodies. In: Staehelin LA, Arntzen CJ (eds) Photosynthesis III: photosynthetic membranes and light-harvesting systems, vol 19. Springer, Berlin, pp 683–692

    Google Scholar 

  • Martínez DE, Costa ML, Guiamet JJ (2008) Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Biol 10(Suppl 1):15–22

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson G (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Miersch I, Heise J, Zelmer I, Humbeck K (2000) Differential degradation of the photosynthetic apparatus during leaf senescence in barley (Hordeum vulgare L.). Plant Biol 2:618–623

    Article  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008a) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moschou PN, Delis ID, Paschalidis KA, Roubelakis-Angelakis KA (2008b) Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol Plant 133:140–156

    Article  CAS  PubMed  Google Scholar 

  • Mullet JE (1988) Chloroplast development and gene expression. Annu Rev Plant Physiol Plant Mol Biol 39:503–532

    Article  Google Scholar 

  • Navakoudis E, Lütz C, Langebartels C, Lütz-Meindl U, Kotzabasis K (2003) Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochim Biophys Acta 1621:160–169

    Article  CAS  PubMed  Google Scholar 

  • Navakoudis E, Vrentzou K, Kotzabasis K (2007) A polyamine- and LHCII protease activity-based mechanism regulates the plasticity and adaptation status of the photosynthetic apparatus. Biochim Biophys Acta 1767:261–271

    Article  CAS  PubMed  Google Scholar 

  • Ouelhadj A, Kaminski M, Mittag M, Humbeck K (2007) Receptor-like protein kinase HvLysMR1 of barley (Hordeum vulgare L.) is induced during leaf senescence and heavy metal stress. J Exp Bot 58:1381–1396

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446

    Article  CAS  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol 138:2174–2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Robertson D, Laetsch W (1974) Structure and function of developing barley plastids. Plant Physiol 54:148–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rott M, Martins NF, Thiele W, Lein W, Bock R, Kramer DM, Schöttler MA (2011) ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by over acidification of the thylakoid lumen. Plant Cell 23:304–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Schansker G, Strasser RJ (2005) Quantification of non-QB-reducing centers in leaves using a far-red pre-illumination. Photosynth Res 84:145–151

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    Article  CAS  PubMed  Google Scholar 

  • Schoefs B, Franck F (2003) Protochlorophyllide reduction: mechanisms and evolution. Photochem Photobiol 78:543–557

    Article  CAS  PubMed  Google Scholar 

  • Shaw P, Henwood J, Oliver R, Griffiths T (1985) Immunogold localization of protochlorophyllide oxidoreductase in barley etioplasts. Eur J Cell Biol 39:50–55

    Google Scholar 

  • Sood S, Nagar PK (2005) Xylem and phloem derived polyamines during flowering in two diverse rose species. J Plant Growth Regul 24:36–40

    Article  CAS  Google Scholar 

  • Srivastava A, Strasser RJ, Govindjee (1999) Greening of peas: parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37:365–392

    Article  CAS  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196

    Article  CAS  PubMed  Google Scholar 

  • Stamp P, Herzog H (1976) Untersuchungen zur Fahnenblattalterung und zum Kornwachstum einiger deutscher Sommerweizensorten (Triticum aestivum L.). Z Pflanzenzucht 77:330–338

    Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 5:749–790

    Article  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tassoni A, van Buuren M, Franceschetti M, Fornalè S, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393

    Article  CAS  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1990) Polyamine metabolism. In: Miflin BJ, Lea PJ (eds), Intermediary nitrogen metabolism. The biochemistry of plants, vol. 16. Academic Press, San Diego, pp 283–325

  • Tiburcio AF, Altabella T, Borrell A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100:664–674

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2, is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Wellburn AR (1982) Bioenergetic and ultrastructural changes associated with chloroplast development. Int Rev Cytol 80:133–191

    Article  CAS  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  CAS  PubMed  Google Scholar 

  • Wiedemuth K, Müller J, Kahlau A, Amme S, Mock H, Grzam A, Hell R, Egle K, Beschow H, Humbeck K (2005) Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. J Plant Physiol 162:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Stanley BA, Tekwani BL, Pegg AE (1997) Processing of mammalian and plant S-adenosylmethionine decarboxylase proenzymes. J Biol Chem 272:28342–28348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hellenic-German program IKYDA 2007.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaus Humbeck or Kiriakos Kotzabasis.

Additional information

Nikolaos E. Ioannidis and Wiebke Zschiesche have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioannidis, N.E., Zschiesche, W., Barth, O. et al. The Genetic Reprogramming of Polyamine Homeostasis During the Functional Assembly, Maturation, and Senescence-Specific Decline of the Photosynthetic Apparatus in Hordeum vulgare . J Plant Growth Regul 33, 77–90 (2014). https://doi.org/10.1007/s00344-013-9387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9387-8

Keywords

Navigation