Skip to main content
Log in

Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

HIPP26 from Arabidopsis thaliana belongs to a novel class of plant proteins, characterized by a heavy metal associated domain and an additional isoprenylation motif. It is induced during cold, salt and drought stress. The nuclear localization of HIPP26, predicted by a NLS motif, could be confirmed in onion epidermal cells overexpressing GFP-HIPP26. Experiments with modified HIPP26 indicate that the isoprenylation plays a role in the spatial distribution in the nucleus. Using promoter-GUS constructs, a tissue specific expression pattern of HIPP26 could be shown, with high expression in the vascular tissue. By a yeast-two-hybrid approach a strong interaction of HIPP26 with the zinc finger homeodomain transcription factor ATHB29, which is known to play a role in dehydration stress response could be detected. This was confirmed by GST pull-down assays. When using a modified HIPP26 lacking the two central cysteines of the heavy metal associated domain, ATHB29 was not bound in the GST pull-down assay, indicating that this structure is necessary for the interaction. Further yeast-two-hybrid analyses testing interaction of different members of the HIPP family with related zinc finger transcription factors revealed a specific interaction of ATHB29 with several HIPP proteins. A functional relationship between HIPP26 and ATHB29 is also indicated by experiments with mutants of HIPP26 showing altered expression levels of such genes known to be regulated by ATHB29.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GUS:

Glucuronidase

HIPP:

Heavy metal associated isoprenylated plant protein

HMA:

Heavy metal associated domain

NLS:

Nuclear localization signal

RTQ-PCR:

Quantitative RealTime PCR

smRS-GFP:

Solubility modified red shifted-green fluorescent protein

Y2H:

Yeast two hybrid

ZF-HD:

Zinc finger-homeodomain box

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, lwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in droughtand abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Barth O, Zschiesche W, Siersleben S, Humbeck K (2004) Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiol Plant 121:282–293. doi:10.1111/j.0031-9317.2004.00325.x

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197. doi:10.1007/BF00028908

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Hoth S, Ache P, Wenkel S, Roelfsma MRG, Meyerhoff O et al (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554:119–126. doi:10.1016/S0014-5793(03)01118-9

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Close TJ, Corcuera LJ, Guy CL (1999) Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol Plant 106:177–183. doi:10.1034/j.1399-3054.1999.106205.x

    Article  CAS  Google Scholar 

  • Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337. doi:10.1038/ng1293-327

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054. doi:10.1101/gad.1077503

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Mackey K (1995) Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques 19:942–945

    PubMed  CAS  Google Scholar 

  • Chu CC, Lee WC, Guo WY, Pan SM, Chen LJ, Li HM et al (2005) A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol 139:425–436. doi:10.1104/pp.105.065284

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:736–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  Google Scholar 

  • Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30. doi:10.1016/S0014-5793(99)00091-5

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN (2000) Functional implications of protein isoprenylation in plants. Prog Lipid Res 39:393–408. doi:10.1016/S0163-7827(00)00010-2

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17. doi:10.1104/pp.105.063743

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N et al (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S et al (2003) OsDREB genes in rice. Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763. doi:10.1046/j.1365-313X.2003.01661.x

    Article  PubMed  CAS  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt.49) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564. doi:10.1023/A:1006098132352

    Article  PubMed  CAS  Google Scholar 

  • Dykema PE, Sipes PR, Marie A, Biermann BJ, Crowell DN, Randall SK (1999) A new class of proteins capable of binding transition metals. Plant Mol Biol 41:139–150. doi:10.1023/A:1006367609556

    Article  PubMed  CAS  Google Scholar 

  • Fan HY, Hu Y, Tudor M, Ma H (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J 12:999–1010. doi:10.1046/j.1365-313X.1997.12050999.x

    Article  PubMed  CAS  Google Scholar 

  • Galichet A, Hoyerová K, Kamínek M, Gruissem W (2008) Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant Physiol 146:1155–1164. doi:10.1104/pp.107.107425

    Article  PubMed  CAS  Google Scholar 

  • Godoy JA, Lunar R, Torres-Shuman S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution, and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934. doi:10.1007/BF00019503

    Article  PubMed  CAS  Google Scholar 

  • Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Methods in enzymology, vol 194. Academic Press, New York

    Book  Google Scholar 

  • Haralampidis K, Milioni D, Rigas S, Hatzopoulos P (2002) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. Plant Physiol 129:1138–1149. doi:10.1104/pp004044

    Article  PubMed  CAS  Google Scholar 

  • Harrison MD, Jones CE, Solioz M, Dameron CT (2000) Intracellular copper routing: the role of chaperones. Trends Biochem Sci 25:29–32. doi:10.1016/S0968-0004(99)01492-9

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res 27(1):297–300. doi:10.1093/nar/27.1.297

    Article  PubMed  CAS  Google Scholar 

  • Himelblau E, Mira M, Lin SJ, Culotta VC, Penarrubia L, Amasino RM (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117:1227–1234. doi:10.1104/pp.117.4.1227

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583–593. doi:10.1046/j.1365-313X.1995.8040583.x

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Yang X, Wang MM, Tang HJ, Ding LY, Shen Y et al (2007) A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochim Biophys Acta 1769:220–227

    PubMed  CAS  Google Scholar 

  • Hung IH, Casareno RL, Labesse G, Mathews FS, Gitlin JD (1998) HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 16:1749–1754. doi:10.1074/jbc.273.3.1749

    Article  Google Scholar 

  • James P, Halladay J, Craig AE (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promotor of TL-DNA gene 5 controls the tissue specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396. doi:10.1007/BF00331014

    Article  CAS  Google Scholar 

  • Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VZ (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272:9215–9220. doi:10.1074/jbc.272.14.9215

    Article  PubMed  CAS  Google Scholar 

  • Martienssen RA (1998) Functional genomics: probing plant gene function and expression with transposons. PNAS USA 95:2021–2026. doi:10.1073/pnas.95.5.2021

    Article  PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279. doi:10.1023/A:1006469128280

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC et al (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter ismediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161. doi:10.1104/pp.104.041442

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Kim ML, Lee SM, Bahk JD, Yun DJ, Lim CO, Hong JC, Lee SY, Choo MJ, Chung WS (2007) Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter. Nucleic Acids Res, Published online: doi:10.1093/nar/gkm273

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool REST© for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:36. doi:10.1093/nar/30.9.e36

    Article  Google Scholar 

  • Philipps G, Drzewiecki C, Barth O, Zschiesche W, Humbeck K (2006) Light-dependent expression of the cold-regulated gene HvMC1 in barley (Hordeum vulgare L.). J Therm Biol 31:473–482. doi:10.1016/j.jtherbio.2006.04.002

    Article  CAS  Google Scholar 

  • Puig S, Mira H, Dorcey E, Sancenon V, Andres-Colas N, Garcia-Molina A et al (2007) Higher plants possess two different types of ATX1-like copper chaperones. Biochem Biophys Res Commun 354:385–390. doi:10.1016/j.bbrc.2006.12.215

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Yalovsky S, Gruissem W (1999) Protein prenylation in plants: old friends and new targets. Plant Mol Biol 39:865–870. doi:10.1023/A:1006170020836

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195. doi:10.1016/S0168-6445(03)00053-6

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Yamaguchi Y, Koizumi N, Sano H (2002) Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J 32:165–173. doi:10.1046/j.1365-313X.2002.01412.x

    Article  PubMed  CAS  Google Scholar 

  • Tan QKG, Irish VF (2006) The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are co-ordinately expressed during floral development. Plant Physiol 140:1095–1108. doi:10.1104/pp.105.070565

    Article  PubMed  CAS  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD et al (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63. doi:10.1111/j.1365-313X.2006.02932.x

    Article  PubMed  CAS  Google Scholar 

  • Windhövel A, Hein I, Dabrowa R, Stockhaus J (2001) Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia. Plant Mol Biol 45:201–214. doi:10.1023/A:1006450005648

    Article  PubMed  Google Scholar 

  • Yalovsky S, Rodríguez-Concepción M, Gruissem W (1999) Lipid modifications of proteins—slipping in and out of membranes. Trends Plant Sci 4:439–445. doi:10.1016/S1360-1385(99)01492-2

    Article  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi:10.1104/pp.104.046367

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ingrid Bauerfeld and Claudia Schramm for excellent technical assistance and Claudia Humbeck for her help during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Humbeck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Alignment of the deduced amino acid sequences of HIPPs of subcluster III (see Fig. 1a) based on the sequence of the barley protein HvFP1. In addition the sequence of the heavy metal associated (HMA) domain (pfam00403.6) is shown. Boxes indicate the NLS (nuclear localization signal), the HMA domain including the central M/L/IxCxxC motif and the C-terminal isoprenylation motif (CaaX) which is accompanied by the cCT sequence. The black background indicates amino acid residues that are identical, and grey shading indicates amino acids that are similar to the HvFP1 sequence. Alignment was performed using ClustalW in the Lasergene expert sequence analysis software (DNASTAR Inc., Madison, WI, USA) (JPG 1609 kb)

Supplemental Fig. 2

Northern analysis of transcript levels of HIPP26 in homozygous F2 plants caring either the AtHIPP26 wildtype or the Athipp26 knock out alleles before and after 24 h of a combined cold (6°C) and high light (600 µEm−2 s−1) treatment. Four leaves of three different plants were pooled before total RNA was extracted. The identity numbers of each individual plant are indicated. Two different exposure times are shown. Ethidium bromide stained rRNA illustrates an equal loading of 15 µg total RNA per sample (JPG 1309 kb)

Supplemental Table S1

All the oligo nucleotides used for cloning and quantitative RealTime PCR procedures as described in the chapter material and methods (XLS 26 kb

Supplemental Table S2

Complete web signal scan results using the plant cis-acting regulatory DNA elements (PLACE) database (Higo et al. 1999, http://www.dna.affrc.go.jp/PLACE/) and a 1055 bp DNA sequence upstream the coding region of HIPP26. (XLS 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, O., Vogt, S., Uhlemann, R. et al. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol 69, 213–226 (2009). https://doi.org/10.1007/s11103-008-9419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9419-0

Keywords

Navigation