Skip to main content
Log in

Wood Grain Pattern Formation: A Brief Review

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In trees, new wood develops from a layer of stem cells called the vascular cambium. A subpopulation of cambial cells—the fusiform initials—are elongated and capable of coordinated reorientation in response to internal and external stimuli. Changes in the orientation of fusiform initials in turn leads to changes in the grain pattern of developing wood. This article reviews the phenomenon of cambial orientation, with an emphasis on a recent computer model that takes the plant hormone auxin as the orienting signal. New model results are presented that demonstrate the surprisingly complex grain patterns that can emerge from simple initial conditions, in qualitative agreement with similar patterns found in wood. Lastly, an alternative theory of wood grain pattern that takes mechanical stress as the orienting signal is critically evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  • Aloni R. 2001. Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J Plant Growth Regul 20:22–34

    Article  CAS  Google Scholar 

  • Aloni R, Zimmermann MH. 1983. The control of vessel size and density along the plant axis: a new hypothesis. Differentiation 24:203–208

    Article  Google Scholar 

  • Andre JP. 2000. Heterogeneous, branched, zigzag and circular vessels: unexpected but frequent forms of tracheary element files: description–localization–formation. In: Savidge RA, Barnett J, Napier R, editors. Cell and Molecular Biology of Wood Formation. Oxford, England, UK: BIOS Scientific Publishers

  • Bonhoeffer T, Grinvald A. 1991. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Mrksich M, Huang S, Whitesides GM, Ingber D. 1997. Geometric control of cell life and death. Science 276:1425–1428

    Article  PubMed  CAS  Google Scholar 

  • Davies P editor. 2004. Plant Hormones: Biosynthesis, Signal Transduction, Action 3rd edition. Kluwer Academic Publishers, London, England, UK

    Google Scholar 

  • Davis A-C, Brandenberger R editors. 1994. Formation and Interaction of Topological Defects, Vol 349. New York, USA, Plenum Press

    Google Scholar 

  • De Gennes PG. 1995. The Physics of Liquid Crystals. Oxford University Press, New York, NY, USA

    Google Scholar 

  • Eames AJ, MacDaniels LH (1925) An introduction to plant anatomy. McGraw-Hill, New York

    Google Scholar 

  • Edelstein-Keshet L, Bard Ermentrout G. 1990. Models for contact-mediated pattern formation: cells that form parallel arrays. J Math Biol 29:33–58

    Article  PubMed  CAS  Google Scholar 

  • Eklund L, Sall H. 2000. The influence of wind on spiral grain formation in conifer trees. Trees 14:324–328

    Article  Google Scholar 

  • Fayle D, Farrar J. 1965. A note on the polar transport of exogenous auxin in woody root cuttings. Can J Bot 43:1004–1007

    CAS  Google Scholar 

  • Forest L, Padilla F, Martinez S, Demongeot J, San Martin. 2006. Modeling of auxin transport affected by gravity and differential radial growth. J Theor Biol 241:241–251

    Google Scholar 

  • Galton F. 2005. Finger Prints. Dover Publications, Mineola, New York, USA

    Google Scholar 

  • Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, et al. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith MHM, Goldsmith TH, Martin MH. 1981. Mathematical analysis of the chemosmotic polar diffusion of auxin through plant tissues. Proc Natl Acad Sci 78:976–980

    Article  PubMed  CAS  Google Scholar 

  • Gregory FG, Hancock CR. 1955. The rate of transport of natural auxin in woody shoots. Ann Bot 19: 451–465

    CAS  Google Scholar 

  • Gutknecht J, Walter A. 1980. Transport of auxin (indoleacetic acid) through lipid bilayer membranes. J Memb Biol 56:65–72

    Article  CAS  Google Scholar 

  • Harris JM. 1969. On the causes of spiral grain in corewood of radiata pine. N Z J Bot 7:189–213

    Google Scholar 

  • Harris JM. 1973. Spiral grain and xylem polarity in radiata pine: microscopy of cambial reorientation. N Z J For Sci 3:363–378

    Google Scholar 

  • Harris JM. 1989. Spiral grain and wave phenomena in wood formation. Springer-Verlag, New York, USA

    Google Scholar 

  • Hejnowicz Z, Kurczynska E. 1987. Occurrence of circular vessels above axillary buds in stems of woody plants. Acta Soc Bot Pol 56:415–419

    Google Scholar 

  • Hollis CA, Tepper HB. 1971. Auxin transport within intact dormant and active white ash shoots. Plant Physiol 48:146–149

    PubMed  CAS  Google Scholar 

  • Iqbal M editor. 1990. The Vascular Cambium. New York, USA: John Wiley & Sons

    Google Scholar 

  • Johnson CF, Morris DA. 1989. Applicability of the chemiosmotic polar diffusion theory to the transport of indole-3yl-acetic acid in the intact pea. Planta 178:242–248

    Article  CAS  Google Scholar 

  • Kidd W. 1903. The Direction of Hair in Animals and Man. Adam and Charles Black, London, England, UK

    Google Scholar 

  • Kirschner H, Sachs T, Fahn A. 1971. Secondary xylem reorientation as a special case of vascular tissue differentiation. Isr J Bot 20:184–198

    Google Scholar 

  • Kozlowski TT, Winget CH. 1963. Patterns of water movement in forest trees. Bot J 124:301–311

    Google Scholar 

  • Kramer EM. 1999. Observation of topological defects in the xylem of Populus deltoides and implications for the vascular cambium. J Theor Biol 200:223–230

    Article  PubMed  Google Scholar 

  • Kramer EM. 2002. A mathematical model of pattern formation in the vascular cambium of trees. J Theor Biol 216:147–158

    Article  PubMed  Google Scholar 

  • Kramer EM. 2004. PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9:578–582

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM, Borkowski MH. 2004. Wood grain patterns at branch junctions: modeling and implications. Trees 18:493–500

    Article  Google Scholar 

  • Kramer EM, Groves JV. 2003. Defect coarsening in a biological system: the vascular cambium of cottonwood trees. Phys Rev E 67:041914

    Article  CAS  Google Scholar 

  • Kucken M, Newell A (2005) Fingerprint formation. J Theor Biol 235:71–85

    Article  PubMed  Google Scholar 

  • Kurczynska E, Hejnowicz Z. 1991. Differentiation of circular vessels in isolated stem segments of Fraxinus excelsior. Physiologia Plantarum 83: 275–280

    Article  Google Scholar 

  • Lachaud S. 1989. Participation of auxin and abscisic acid in the regulation of seasonal variations in cambial activity and xylogenesis. Trees 3:125–137

    Article  Google Scholar 

  • Lachaud S, Bonnemain JL. 1982. Xylogenese chez les dicotyledones arborescentes. III. Transport de l’auxine et activite cambaile dans les jeunes tiges de Hetre. Can J Bot 60: 869–876

    CAS  Google Scholar 

  • Lachaud S, Bonnemain JL. 1984. Seasonal variations in the polar-transport pathways and retention sites of [3H]indole-3-acetic acid in young branches of Fagus sylvatica L. Planta 161:207–215

    Article  CAS  Google Scholar 

  • Larson PR. 1994. The Vascular Cambium. Springer-Verlag, New York, USA

    Google Scholar 

  • Lee HY, Yahyanejad M, Kardar M. 2003. Symmetry considerations and development of pinwheels in visual maps. Proc Natl Acad Sci USA 100:16036–16040

    Article  PubMed  CAS  Google Scholar 

  • Lev-Yadun S. 2000. Whirled grain in wood and topological defects. J Theor Biol 205:511–514

    Article  PubMed  CAS  Google Scholar 

  • Lev-Yadun S, Aloni R. 1990. Vascular differentiation in branch junctions of trees: circular patterns and functional significance. Trees 4:49–54

    Article  Google Scholar 

  • Lintilhac P, Vesecky T. 1981. Mechanical stress and cell wall orientation in plants. II. The application of controlled directional stress to growing plants; with a discussion on the nature of the wound reaction. Am J Bot 68:1222–1230

    Article  Google Scholar 

  • Lintilhac P, Vesecky T. 1984. Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364

    Article  Google Scholar 

  • Little CHA. 1981. Effect of cambial dormancy state on the transport of [1-14C]indol-3-ylacetic acid in Abies balsamea shoots. Can J Bot 59:342–348

    CAS  Google Scholar 

  • Mattheck C. 1991. Trees: the Mechanical Design. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Mattheck C. 1998. The structural optimization of trees. Naturwissenschaften 85:1–10

    Article  CAS  Google Scholar 

  • Mattheck C, Kubler H. 1995. Wood: the Internal Optimization of Trees. Springer-Verlag, New York, USA

    Google Scholar 

  • Mitchison GJ. 1980. The dynamics of auxin transport. Proc R Soc Lond B. Biol Sci 209:489–511

    Article  CAS  Google Scholar 

  • Mogilner A, Edelstein-Keshet L. 1995. Selecting a common direction I. How orientational order can arise from simple contact responses between interacting cells. J Math Biol 33:619–660

    Article  Google Scholar 

  • Neeff F. 1914. Uber Zellumlagerung. Z Bot 6:465–547

    Google Scholar 

  • Neeff F. 1922. Uber polares Wachstum von Pflanzenzellen. Jahrb] wissenschaft Bot 61:205–283

  • Nix LE, Wodzicki TJ. 1974. The radial distribution and metabolism of IAA-14C in Pinus echinata stems in relation to wood formation. Can J Bot 52:1349–1355

    CAS  Google Scholar 

  • Novitskaya L 1998. Regeneration of bark and formation of abnormal birch wood. Trees 13:74–79

    Article  Google Scholar 

  • Odani K 1985. Indole-3-acetic acid transport in pine shoots under the stage of true dormancy. J Jpn For Soc 67:332–334

    Google Scholar 

  • Pellicane P (1994) Mathematical details of the flow–grain predictor of grain orientation. For Products J 44:51–54

    Google Scholar 

  • Phillips GE, Bodig J, Goodman JR. 1981. Flow–grain analogy. Wood Sci 14:55–64

    Google Scholar 

  • Rudinsky JA, Vite JP. 1959. Certain ecological and phylogenetic aspects of the pattern of water conduction in conifers. Forest Sci 5:259–266

    Google Scholar 

  • Sachs T 1991. Pattern Formation in Plant Tissues. Cambridge University Press, New York, USA

    Google Scholar 

  • Sachs T. 2000. Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41:649–656

    PubMed  CAS  Google Scholar 

  • Sachs T, Cohen D. 1982. Circular vessels and the control of vascular differentiation in plants. Differentiation 21:22–26

    Article  Google Scholar 

  • Savidge RA, Barnett J, Napier R editors. 2000. Cell and Molecular Biology of Wood Formation. BIOS Scientific Publishers, Oxford, England, UK

    Google Scholar 

  • Savidge RA, Farrar J. 1984. Cellular adjustments in the vascular cambium leading to spiral grain formation in conifers. Can J Bot 62:2872–2879

    Google Scholar 

  • Schrader J, Nilsson P, Herzberg M, Sandberg G, Nilsson J, et al. 2004. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292

    Article  PubMed  CAS  Google Scholar 

  • Schrader K, Baba K, May S, Palme K, Bhalerao R, et al. 2003. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101

    Article  PubMed  CAS  Google Scholar 

  • Schulte P, Brooks J. 2003. Branch junctions and the flow of water through xylem in Douglas fir and Ponderosa pine stems. J Exp Bot 54:1597–1605

    Article  PubMed  CAS  Google Scholar 

  • Shigo AL. 1985. How tree branches are attached to trunks. Can J Bot 63:1391–1401

    Article  Google Scholar 

  • Sundberg B, Tuominen H, Little CHA. 1994. Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic acid and morphactin on endogenous IAA dynamics in relation to compression wood formation in 1-year-old Pinus sylvestris shoots. Plant Physiol 106:469–476

    PubMed  CAS  Google Scholar 

  • Sundberg B, Uggla C. 1998. Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris. Physiol Plant 104:22–29

    Article  CAS  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H. 2000. Cambial growth and auxin gradients. In: Savidge RA, Barnett J, Napier R (eds) Cell & Molecular Biology of Wood Formation. BIOS Scientific Publishers, Oxford, England, UK, pp 169–188

    Google Scholar 

  • Sutton A, Sutton M. 1981. Le Monde des Arbres. Paris, France, Larousse

  • Swarup R, Kramer EM, Perry P, Knox K, Leyser O, et al. 2005. Root gravitropism requires lateral rooot cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Tuominen H, Peuch L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in Populus. Plant Physiol 115:577–585

    PubMed  CAS  Google Scholar 

  • Uggla C, Mellerowicz E, Sundberg B. 1998. Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  PubMed  CAS  Google Scholar 

  • Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, et al. 2005. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross regulation of PIN expression. Development 132:4521–4531

    Article  PubMed  CAS  Google Scholar 

  • Wentworth CK. 1931. Twist in the grain of coniferous trees. Science 73:192

    Article  PubMed  CAS  Google Scholar 

  • Wilcox DA. 2000. Basic Fluid Mechanics. La Canada, CA, USA, DCW Industries

  • Wloch W. 1976. Cell events in the cambium, connected with the formation and existence of a whirled cell arrangement. Acta Soc Bot Pol 45:313–326

    Google Scholar 

  • Wunderlich RC, Heerema NA. 1975. Hair crown patterns of human newborns: studies on parietal hair whorl locations and their direction. Clin Pediatr 14:1045–1049

    CAS  Google Scholar 

  • Zagorska-Marek B, Little CHA. 1986. Control of fusiform initial orientation in the vascular cambium of Abies balsamea stems by indole-3-ylacetic acid. Can J Bot 64:1120–1128

    Article  CAS  Google Scholar 

  • Zamski E, Wareing PF. 1974. Vertical and radial movement of auxin in young sycamore plants. New Phytol 73:61–69

    Article  CAS  Google Scholar 

  • Zimmermann MH, Brown C (1971) Trees: structure and function., Springer-Verlag, New York, USA

    Google Scholar 

Download references

Acknowledgments

We thank Tobias Baskin, Mike Bergman, and Jennifer Normanly for helpful conversations, and Henrik Jonsson for a critical reading of the mansucript. Research assistants Mike Borkowski and Joe Groves made valuable contributions to the development of the model. This work was supported in part by Simon’s Rock College, and by the National Research Initiative of the U.S. Department of Agriculture Cooperative State Research, Education and Extension Service, grant number 2003-35103-13793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, E.M. Wood Grain Pattern Formation: A Brief Review. J Plant Growth Regul 25, 290–301 (2006). https://doi.org/10.1007/s00344-006-0065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-006-0065-y

Keywords

Navigation