Skip to main content
Log in

Vascular differentiation in branch junctions of trees: circular patterns and functional significance

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

Regions of spiral vascular tissues and circular vessels occur normally in branch junctions. Their size and frequency increase continuously with age and stem width. This phenomenon is general and was found in all the 15 species studied. The differentiation of narrow spiral vessels with non-functional circular vessels decreases water conductivity through branch junctions leading to hydraulic segmentation of lateral branches from the main stem. Possible hormonal mechanisms controlling circular vascular patterns and narrow vascular elements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloni R (1987a) The induction of vascular tissues by auxin. In: Davis PJ (ed) Plant hormones and their role in plant growth and development. Nijhoff, Dordrecht, pp 363–374

    Google Scholar 

  • Aloni R (1987b) Differentiation of vascular tissues. Annu Rev Plant Physiol 38: 179–204

    Google Scholar 

  • Aloni R (1990) Wood formation in deciduous hardwood trees. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York (in press)

    Google Scholar 

  • Aloni R, Wolf A (1984) Suppressed buds embedded in the bark across the bole and the occurrence of their circular vessels in Ficus religiosa. Am J Bot 71: 1060–1066

    Google Scholar 

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis — a new hypothesis. Differentiation 24: 203–208

    Google Scholar 

  • Aloni R, Zimmermann MH (1984) Length, width and pattern of regenerative vessels along strips of vascular tissues. Bot Gaz 154: 50–54

    Google Scholar 

  • Barrows-Broaddus J, Dwinell LD (1983) Histopathology of Fusarium moniliforme var. subglutinans in four species of southern pines. Phytopathology 73: 882–889

    Google Scholar 

  • Chattaway MM (1958) Bud development and lignotuber formation in Eucalypts. Aust J Bot 6: 103–115

    Google Scholar 

  • Eames AJ, MacDaniels LH (1947) An introduction to plant anatomy. 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Fink S (1982) Adventitious root primordia — the cause of abnormally broad xylem rays in hard- and softwood. IAWA Bull NS 3: 31–38

    Google Scholar 

  • Halle F, Oldeman RAA (1975) An essay on the architecture and dynamics of growth of tropical trees. Penerbit University Press, Kuala Lumpur

    Google Scholar 

  • Hejnowicz Z, Kurczynska EU (1987) Occurrence of circular vessels above axillary buds in tems of woody plants. Acta Soc Bot Pol 56: 415–419

    Google Scholar 

  • Horn HS (1971) The adaptive geometry of trees. Princeton University Press, Princeton

    Google Scholar 

  • Indig FE, Aloni R (1989) An experimental method for studying the differentiation of vessel endings. Ann Bot 64: 589–592

    Google Scholar 

  • Isebrands JG, Larson PR (1977) Vascular anatomy of the nodal region in Populus deltoides Bartr. Am J Bot 64: 1066–1077

    Google Scholar 

  • Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Am J Bot 39: 301–309

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kirschner H, Sachs T, Fahn A (1971) Secondary xylem reorientation as a special case of vascular tissue differentiation. Isr J Bot 20: 184–198

    Google Scholar 

  • Kučera L (1971) Wundgewebe in der Eibe (Taxus baccata L.). Vierteljahrsschr Naturforsch Ges Zuer 116: 445–470

    Google Scholar 

  • Küster E (1925) Pathologische Pflanzenanatomie, 3rd edn. Fischer, Jena

    Google Scholar 

  • Larson PR, Isebrands JG (1978) Functional significance of the nodal constricted zone in Populus deltoides. Can J Bot 56: 801–804

    Google Scholar 

  • Liphschitz N, Mendel Z (1987) Histological studies of Pinus halepensis stem xylem affected by Matsucoccus josephi (Homoptera: Margarodidae). IAWA Bull NS 8: 369–376

    Google Scholar 

  • Luxová M (1986) The hydraulic safety zone at the base of barley roots. Planta 169: 465–470

    Google Scholar 

  • Madar Z, Liphschitz N (1989) Histological studies of Cupressus sempervirens L. affected by Diplodia pinea f. sp. cupressi and Seiridium cardinale. IAWA Bull NS 10: 183–192

    Google Scholar 

  • Millington WF, Chaney WR (1973) Shedding of shoots and branches. In: Kozlowski TT (ed) Shedding of plant parts. Academic Press, New York, pp 149–204

    Google Scholar 

  • Neeff F (1914) Über Zellumlagerung. Ein Beitrag zur experimentellen Anatomie. Z Bot 6: 465–547

    Google Scholar 

  • Neeff F (1922) Über polares Wachstum von Pflanzenzellen. Jahrb. Wiss Bot 61: 205–283

    Google Scholar 

  • Phillips IDJ (1975) Apical dominance. Annu Rev Plant Physiol 26: 341–367

    Google Scholar 

  • Roberts LW, Gahan PB, Aloni R (1988) Vascular differentiation and plant growth regulators. In: Timell TE (ed) Springer series in wood science. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rubinstein B, Nagao MA (1976) Lateral bud outgrowth and its control by the apex. Bot Rev 42: 83–113

    CAS  Google Scholar 

  • Sachs T (1968) On the determination of the pattern of vascular tissue in peas. Ann Bot 32: 781–790

    Google Scholar 

  • Sachs T (1969) Polarity and the induction of organized vascular tissues. Ann Bot 33: 263–275

    Google Scholar 

  • Sachs T (1975) The control of the differentiation of vascular networks. Ann Bot 39: 197–204

    Google Scholar 

  • Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9: 151–262

    Google Scholar 

  • Sachs T, Cohen D (1982) Circular vessels and the control of vascular differentiation in plants. Differentiation 21: 22–26

    Google Scholar 

  • Salleo S, Rosso R, LoGullo MA (1982) Hydraulic architecture of Vitis vinifera L. and Populus deltoides Bartr. 1-year-old twigs: II The nodal regions as “constriction zones” of the xylem system. G Bot Ital 116: 29–40

    Google Scholar 

  • Salleo S, LoGullo MA, Siracusano L (1984) Distribution of vessel ends in stems of some diffuse- and ring-porous trees: the nodal regions as “safety zones” of the water conducting system. Ann Bot 54: 543–552

    Google Scholar 

  • Sprengel F (1936) Über die Kropfkrankheit an Eiche, Kiefer und Fichte. Phytopathol Z 9: 583–635

    Google Scholar 

  • Tsoumis G, Kezos N, Fanariotou I, Voulgaridis E, Passialis C (1988) Characteristics of briarwood. Holzforschung 42: 71–77

    Google Scholar 

  • Tupper-Carey RM (1930) Observations on the anatomical changes in tissue bridges across rings through the phloem of trees. Leeds Phil Lit Soc Sci Sec 2: 86–94

    Google Scholar 

  • Vöchting H (1892) Über Transplantion am Pflanzenkörper. Untersuchungen zur Physiologie und Pathologie. Laupp'schen, Tübingen

    Google Scholar 

  • Vöchting H (1918) Untersuchungen zur experimentellen Anatomie und Pathologie des Pflanzenkörpers. II. Die Polarität der Gewächse. Laupp'schen, Tübingen

    Google Scholar 

  • Wainwright SA (1988) Axis and circumference. The cylindrical shape of plants and animals. Harvard University Press, Cambridge

    Google Scholar 

  • Wiebe HH, Greer RL, Van Alfen NK (1984) Frequency and grouping of essel endings in alfalfa (Medicago sativa) shoots. New Phytol 97: 583–590

    Google Scholar 

  • Wloch W (1976) Cell events in cambium, connected with the formation and existence of a whirled cell arrangement. Acta Soc Bot Pol 45: 313–326

    Google Scholar 

  • Zimmermann MH (1978) Structural requirements for optimal water conduction in tree stems. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Cambridge University Press, Cambridge, pp 517–532

    Google Scholar 

  • Zimmermann MH (1982) Functional xylem anatomy of angiosperm trees. In: Baas P (ed) New perspectives in wood anatomy. Nijhoff, The Hague, pp 59–70

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. In: Timell TE (ed) Springer series in wood science. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zimmermann MH, Sperry JS (1983) Anatomy of the palm Rhapis excelsa. IX. Xylem structure of the leaf insertion. J Arnold Arbor Harv Univ 64: 599–609

    Google Scholar 

  • Zimmermann MH, Tomlinson PB (1965) Anatomy of the palm Rhapis excelsa I. Mature vegetative axis. J Arnold Arbor Harv Univ 46: 160–178 cd

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev-Yadun, S., Aloni, R. Vascular differentiation in branch junctions of trees: circular patterns and functional significance. Trees 4, 49–54 (1990). https://doi.org/10.1007/BF00226240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226240

Key words

Navigation