Skip to main content
Log in

Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakowska-Barczak A M, Schieber A, Kolodziejczyk P. 2009. Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. J. Agric. Food Chem., 57 (24): 11528–11536.

    Article  Google Scholar 

  • Banz W J, Davis J E, Clough R W, Cheatwood J L. 2012. Stearidonic acid: is there a role in the prevention and management of type 2 diabetes mellitus? J. Nutr., 142 (3): 635S–640S.

    Article  Google Scholar 

  • Becker E W. 1994. Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge. 293p.

    Google Scholar 

  • Bernstein H C, Konopka A, Melnicki M R, Hill E A, Kucek L A, Zhang S Y, Shen G Z, Bryant D A, Beliaev A S. 2014. Effect of mono-and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002. Front Microbiol., 5: 488.

    Article  Google Scholar 

  • Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37 (8): 911–917.

    Article  Google Scholar 

  • Boyanapalli R, Bullerjahn G S, Pohl C, Croot P L, Boyd P W, McKay R M L. 2007. Luminescent whole-cell cyanobacterial bioreporter for measuring Fe availability in diverse marine environments. Appl. Environ. Microbiol., 73 (3): 1019–1024.

    Article  Google Scholar 

  • Chen G, Qu S J, Wang Q, Bian F, Peng Z Y, Zhang Y, Ge H T, Yu J H, Xuan N, Bi Y P, He Q F. 2014. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. Biotechnol. Biofuels, 7: 32.

    Article  Google Scholar 

  • Davidson M H. 2013. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid. Curr. Opin. Lipidol., 24 (6): 467–474.

    Article  Google Scholar 

  • Davies F K, Work V H, Beliaev A S, Posewitz M C. 2014. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng. Biotechnol., 2: 21.

    Article  Google Scholar 

  • Eckert H, La Vallee B, Schweiger B J, Kinney A J, Cahoon E B, Clemente T. 2006. Co-expression of the borage Δ 6 desaturase and the Arabidopsis Δ 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta, 224 (5): 1050–1057.

    Article  Google Scholar 

  • Gallardo M A, Cárcamo J G, Hiller B, Nuernberg G, Nuernberg K, Dannenberger D. 2015. Expression of lipid metabolism related genes in subcutaneous adipose tissue from Chilota lambs grazing on two different pasture types. Eur. J. Lipid Sci. Technol., 117 (1): 23–30, http://dx.doi.org/10.1002/ ejlt.201400033.

    Article  Google Scholar 

  • Graham I A, Larson T, Napier J A. 2007. Rational metabolic engineering of transgenic plants for biosynthesis of omega-3 polyunsaturates. Curr. Opin. Biotechnol., 18 (2): 142–147.

    Article  Google Scholar 

  • Harris W S. 2012. Stearidonic acid-enhanced soybean oil: a plant-based source of (n-3) fatty acids for foods. J. Nutr., 142 (3): 600S–604S.

    Article  Google Scholar 

  • Jacobsen J H, Frigaard N U. 2014. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab. Eng., 21: 60–70.

    Article  Google Scholar 

  • Kenyon C N. 1972. Fatty acid composition of unicellular strains of blue-green algae. J. Bact eriol., 109 (2): 827–834.

    Google Scholar 

  • Khozin-Goldberg I, Iskandarov U, Cohen Z. 2011. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biotechnol., 91 (4): 905–915.

    Article  Google Scholar 

  • Kim S H, Park J S, Kim S Y, Kim J B, Roh K H, Kim H U, Lee K R, Kim J B. 2014. Functional characterization of polyunsaturated fatty acid delta 6-desaturase and elongase genes from the black seabream (Acanthopagrus schlegelii). Cell Biochem. Biophys., 68 (2): 335–346.

    Article  Google Scholar 

  • Lazic M, Inzaugarat M E, Povero D, Zhao I C, Chen M, Nalbandian M, Miller Y I, Cherñ avsky A C, Feldstein A E, Sears D D. 2014. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis. PLoS One, 9 (9): e107658.

    Article  Google Scholar 

  • Lee J H, O’Keefe J H, Lavie C J, Harris W S. 2009. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nat. Rev. Cardiol., 6 (12): 753–758.

    Article  Google Scholar 

  • Lenihan-Geels G, Bishop K S, Ferguson L R. 2013. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients, 5 (4): 1301–1315.

    Article  Google Scholar 

  • Liu X, Sheng J, Curtiss R III. 2011. Fatty acid production in genetically modified cyanobacteria. Proc. Natl. Acad. Sci. USA, 108(17): 6 899–6 904.

    Article  Google Scholar 

  • Maslova I P, Muradyan E A, Lapina S S, Klyachko-Gurvich G L, Los D A. 2004. Lipid fatty acid composition and thermophilicity of cyanobacteria. Russ. J. Plant Physiol., 51(3): 353–360.

    Article  Google Scholar 

  • McNeely K, Xu Y, Bennette N, Bryant D A, Dismukes G C. 2010. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl. Environ. Microbiol., 76 (15): 5032–5038.

    Article  Google Scholar 

  • Meesapyodsuk D, Qiu X. 2012. The front-end desaturase: structure, function, evolution and biotechnological use. Lipids, 47 (3): 227–237.

    Article  Google Scholar 

  • Möllers K B, Cannella D, Jørgensen H, Frigaard N U. 2014. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels, 7: 64.

    Article  Google Scholar 

  • Murata N, Deshnium P, Tasaka Y. 1996. Biosynthesis of gamma-linolenic acid in the cyanobacterium Spirulina platensis, in γ-linolenic acid. In: Huang Y S, Milles D E eds. AOCS Press, Champaign. p.22–32.

  • Murata N, Wada H. 1995. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem. J., 308 (1): 1–8.

    Article  Google Scholar 

  • Nakamura Y, Kaneko T, Hirosawa M, Miyajima N, Tabata S. 1998. CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucl. Acids Res., 26 (1): 63–67.

    Article  Google Scholar 

  • Reddy A S, Nuccio M L, Gross L M, Thomas T L. 1993. Isolation of a Δ 6 -desaturase gene from the cyanobacterium synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol. Biol., 22 (2): 293–300.

    Article  Google Scholar 

  • Reddy A S, Thomas T L. 1996. Expression of a cyanobacterial Δ 6 -desaturase gene results in γ-linolenic acid production in transgenic plants. Nat. Biotechnol., 14 (5): 639–642.

    Article  Google Scholar 

  • Reed D W, Schafer U A, Covello P S. 2000. Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol., 122 (3): 715–720.

    Article  Google Scholar 

  • Sato S, Xing A Q, Ye X G, Schweiger B, Kinney A, Graef G, Clemente T. 2004. Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci., 44 (2): 646–652.

    Article  Google Scholar 

  • Sayanova O V, Beaudoin F, Michaelson L V, Shewry P R, Napier J A. 2003. Identification of primula fatty acid delta 6-desaturases with n-3 substrate preferences. FEBS Lett., 542 (1-3): 100–104.

    Article  Google Scholar 

  • Simon D, Eng P A, Borelli S, Kägi R, Zimmermann C, Zahner C, Drewe J, Hess L, Ferrari G, Lautenschlager S, Wü thrich B, Schmid-Grendelmeier P. 2014. Gamma-linolenic acid levels correlate with clinical efficacy of evening primrose oil in patients with atopic dermatitis. Adv. Ther., 31 (2): 180–188.

    Article  Google Scholar 

  • Stanier R Y, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev., 35 (2): 171–205.

    Google Scholar 

  • Stevens S E Jr, Patterson C O P, Myers J. 1973. The production of hydrogen peroxide by blue-green algae: a survey. J. Phycol., 9 (4): 427–430.

    Google Scholar 

  • Takeyama H, Takeda D, Yazawa K, Yamada A, Matsunaga T. 1997. Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology, 143(8): 2 725–2 731.

    Article  Google Scholar 

  • Tan L, Meesapyodsuk D, Qiu X. 2011. Molecular analysis of Δ6 desaturase and Δ6 elongase from Conidiobolus obscurus in the biosynthesis of eicosatetraenoic acid, a ω3 fatty acid with nutraceutical potentials. Appl. Microbiol. Biotechnol., 90 (2): 591–601.

    Article  Google Scholar 

  • Tasset-Cuevas I, Fernández-Bedmar Z, Lozano-Baena M D, Campos-Sánchez J, de Haro-Bailón A, Muñoz-Serrano A, Alonso-Moraga Á. 2013. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies. PLoS One, 8 (2): e56986.

    Article  Google Scholar 

  • Therien J B, Zadvornyy O A, Posewitz M C, Bryant D A, Peters J W. 2014. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginateencapsulated, acetate-producing strains of Synechococcus sp. PCC 7002. Biotechnol. Biofuels, 7: 154.

    Article  Google Scholar 

  • Ursin V M. 2003. Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J. Nutr., 133 (12): 4271–4274.

    Google Scholar 

  • Wang H S, Yu C, Tang X F, Zhu Z J, Ma N N, Meng Q W. 2014. A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Rep., 33 (1): 131–142.

    Article  Google Scholar 

  • Yu C H, Wang H S, Yang S, Tang X F, Duan M, Meng Q W. 2009. Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol. Biochem., 47 (11-12): 1 102–1 112.

    Article  Google Scholar 

  • Zhang M, Barg R, Yin M G, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G. 2005. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J., 44 (3): 361–371.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youzhi Li  (李有志) or Yuping Bi  (毕玉平).

Additional information

Supported by the International S&T Cooperation Program of China (No. 2012DFA30450), the National Natural Science Foundation of China (No. 30871541), the Taishan Scholar Foundation of Shandong Province (No. tshw20091014), and the Innovation Program of the University Institutes of Jinan, Shandong Province (No. 201004044)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., He, Q., Peng, Z. et al. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes. Chin. J. Ocean. Limnol. 34, 772–780 (2016). https://doi.org/10.1007/s00343-016-4369-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-4369-x

Keywords

Navigation