Skip to main content
Log in

Temporal and spatial variations in the distribution of macroalgal communities along the Yantai coast, China

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

To explore the impact of environmental variables on macroalgal their temporal and spatial distributions were examined along the Yantai coast, China between April 2010 and March 2011. Macroalgae sampling was conducted monthly at four sites along the coast: Jiahe River estuary, Zhifu Island, Fisherman’s Wharf, and Yangma Island. The species composition and abundance, and their relationship with environmental variables were assessed. Along the Yantai coast, 35 macroalgae species were identified, including 24 Rhodophyta spp., 7 Chlorophyta, and 4 Phaeophyta spp. Highest species numbers were recorded in the summer at all sampling sites, except in the Jiahe River estuary. Macroalgae biomass was the greatest in the summer. Year-round, the highest species number and dry biomass recorded at Fisherman’s Wharf and Yangma Island was attributed to the substrate type. In summer, Ulva pertusa Kjellman was the dominant species identified along the Yantai coast, which indicates a risk of macroalgae blooms. Our results show that seawater temperature and nutrients appear to significantly affect the temporal and spatial patterns of macroalgal abundance along the Yantai coast. The effects of environmental variables on the macroalgae on the Yantai coast need further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arévalo R A, Pinedo S, Ballestero E. 2007. Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: descriptive study and test of proposed methods to assess water quality regarding macroalgae. Mar. Pollut. Bull., 55: 104–113.

    Article  Google Scholar 

  • Arnold K E, Murray S N. 1980. Relationships between irradiance and photosynthesis for marine benthic green macroalgae (Chlorophyta) of differing morphologies. J. Exp. Mar. Biol. Ecol., 43: 183–192.

    Article  Google Scholar 

  • Balata D, Piazzi L, Cinelli F. 2007. Increase of sedimentation in a subtidal system: effects on the structure and diversity of macroalgal assemblages. J. Exp. Mar. Biol. Ecol., 351: 73–82.

    Article  Google Scholar 

  • Bermejo R, Vergara J J, Hernández I. 2012. Application and reassessment of the reduced species list index for macroalgae to assess the ecological status under the Water Framework Directive in the Atlantic coast of Southern Spain. Ecol. Indic., 12: 46–57.

    Article  Google Scholar 

  • Björnsäter B R, Wheeler P A. 1990. Effect of nitrogen and phosphorus supply on growth and tissue composition of Ulva fenestrate and Enteromorpha intestinalis (Ulvales, Chlorophyta). J. Phycol., 26: 603–611.

    Article  Google Scholar 

  • Bolton J J, Lüning K. 1982. Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar. Biol., 66: 89–94.

    Article  Google Scholar 

  • Burkholder J M, Tomasko D A, Touchette B W. 2007. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol., 350: 46–72.

    Article  Google Scholar 

  • Cai A Z. 1978. On the formation of Zhifu tombolo. Ogean. Limnol. Sin., 9: 1–14. (in Chinese with English abstract)

    Google Scholar 

  • Campbell E E, du Preez D R, Bate G C. 1988. The light environment in a high energy surf-zone with high phytoplankton biomass. Bot. Mar., 31: 329–335.

    Google Scholar 

  • Correll D L. 1978. Estuarine productivity. Biosci ence, 28: 646–650.

    Article  Google Scholar 

  • D’Antonio C M. 1986. Role of sand in the domination of hard substrata by the intertidal alga Rhodomela larix. Mar. Ecol. Prog. Ser., 27: 263–275.

    Article  Google Scholar 

  • Diaz J R, Rosenberg R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol., 33: 245–303.

    Google Scholar 

  • Díaz P, López J J, Piriz M L. 2002. Symptoms of eutrophication in intertidal macroalgal assemblages of Nuevo Gulf (Patagonia, Argentina). Bot. Mar., 45: 267–273.

    Article  Google Scholar 

  • Díez I, Secilla A, Santolaria A, Gorostiaga J M. 1999. Phytobenhic intertidal community structure along an environmental pollution gradient. Mar. Pollu t. Bull., 38: 463–472.

    Article  Google Scholar 

  • Ferreira J G, Ramos L. 1989. A model for the estimation of annual production rates of macrophyte algae. Aquat. Bot., 33: 53–70.

    Article  Google Scholar 

  • Fitzgerald W J Jr. 1978. Environmental parameters influencing the growth of Enteromorpha clathrata (Roth) J. Ag. in the intertidal zone on Guam. Bot. Mar., 21: 207–220.

    Article  Google Scholar 

  • Flindt M R, Pardal M A, Lillebø A I, Martins I, Marques J C. 1999. Nutrient cycling and plant dynamics in estuaries: a brief review. Acta. Oecol., 20: 237–248.

    Article  Google Scholar 

  • Fong P, Zedler J B, Donohoe R M. 1993. Nitrogen vs. phosphorus limitation of algal biomass in shallow coastal lagoons. Limnol. Oceanogr., 38(5): 906–923.

    Article  Google Scholar 

  • Gaylord B, Reed D C, Raimondi P T, Washburn L, McLean S R. 2002. A physically based model of macroalgal spore dispersal in the wave and current-dominated nearshore. Ecology, 83: 1 239–1 251.

    Article  Google Scholar 

  • Gordon E M, Birch P B, Mccomb A J. 1980. The effect of light, temperature, and salinity on photosynthetic rates of an estuarine Cladophora. Bot. Mar., 23: 749–755.

    Google Scholar 

  • Gordon L I, Jennings J C, Ross Jr A A, Krest J M. 1993. A Suggested Protocol for Continuous Flow Automated Analysis of Seawater Nutrients (Phosphate, Nitrate, Nitrite and Silicic Acid) in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study. WOCE Hydrographic Program Office, Methods Manual WHPO. No.68/91. p.1–52.

    Google Scholar 

  • Guerry A D, Menge B A, Dunmore R A. 2009. Effects of consumers and enrichment on abundance and diversity of benthic algae in a rocky intertidal community. J. Exp. Mar. Biol. Ecol., 369: 155–164.

    Article  Google Scholar 

  • Guinda X, Juanes J A, Puente A, Echavarri-Erasun B. 2012. Spatial distribution pattern analysis of subtidal macroalgae assemblages by a non-destructive rapid assessment method. J. Sea Res., 67: 34–43.

    Article  Google Scholar 

  • Han T J, Han Y S, Kim K Y, Kim J H, Shin H W, Kain J M, Callow J A, Callow M E. 2003. Influences of light and UV-B on growth and sporulation of the green alga Ulva pertusa Kjellman. J. Exp. Mar. Biol. Ecol., 290: 115–131.

    Article  Google Scholar 

  • Hellebust J A. 1970. Marine Ecology. Environmental Factors. Wiley-Interscience, London. p.125–158.

    Google Scholar 

  • Hong N, Lin A H, Hou J. 2003. SPSS for Windows. Tsinghua University Press, Beijing. (in Chinese)

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: Synthesis Report. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Kawamata S, Yoshimitsu S, Tanka T, Igari T, Tokunaga S. 2011. Importance of sedimentation for survival of canopyforming fucoid algae in urchin barrens. J. Sea Res., 66: 76–86.

    Article  Google Scholar 

  • King R J, Schramm W. 1976. Photosynthetic rates of benthic marine algae in relation to light and seasonal variations. Mar. Biol., 3 7: 215–222.

    Article  Google Scholar 

  • Kinney E H, Roman C T. 1998. Response of primary producers to nutrient enrichment in a shallow estuary. Mar. Ecol. Prog. Ser., 163: 89–98.

    Article  Google Scholar 

  • Kratz W A, Myers J. 1955. Nutrition and growth of several blue-green algae. Am. J. Bot., 42: 282–287.

    Article  Google Scholar 

  • Kraufvelin P, Lindholm A, Pedersen M F, Kirkerud L A, Bonsdorff E. 2010. Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Mar. Biol., 157: 29–47.

    Article  Google Scholar 

  • Kristiansen A A, Pedersen P M, Moseholm L. 1994. Salinitytemperature effects on growth and reproduction of Scytosiphon lomentaria (Fucophyceae) along the salinity gradient in Danish waters. Phycol., 22: 444–454.

    Article  Google Scholar 

  • Kristiansen A A, Pedersen P M. 1979. Studies on life history and seasonal variation of Scytosiphon lomentaria (Fucophyceae, Scytosiphonales) in Denmark. Bot. Tidss., 74: 31–56.

    Google Scholar 

  • Lapointe B E, Bedford B J. 2007. Drift rhodophyte blooms emerge in Lee County, Florida, USA: Evidence of escalating coastal eutrophication. Harm ful Algae, 6: 421–437.

    Article  Google Scholar 

  • Larned S T. 1998. Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Mar. Biol., 132: 409–421.

    Article  Google Scholar 

  • Liu C N, Jin B F, Song J, Wang H W, Zhang L, Wang X M. 2007. Study on the sediment transport direction on the beach of Taozi Bay, Yantai. Mar. Sci., 31: 59–63. (in Chinese with English abstract)

    Google Scholar 

  • Liu Y H, Liu X J, Xing H Y, Jin Y, Ma Y Q, Liu X B. 2006. Analysis of the water quality in the sea area of Sishili Bay of Yantai in 2003. Trans. Oceano gr. Limnol., 3: 93–97. (in Chinese with English abstract)

    Google Scholar 

  • Lobban C S, Harrison P J. 1997. Seaweed Ecology and Physiology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lüning K. 1980. Critical levels of light and temperature regulating the gametogenesis of three Laminaria species. J. Phycol., 16: 1–15.

    Article  Google Scholar 

  • Lüning K. 1990. Seaweeds: Their Environment, Biogeography and Ecophysiology. Wiley Interscience, New York.

    Google Scholar 

  • Masson P, Greig S P. 1983. Quantitative Plant Ecology. Blackwell Science Publication, London. p.105–128.

    Google Scholar 

  • McGlathery K J. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal Waters. J. Phycol., 37: 453–456.

    Article  Google Scholar 

  • Melville F. 2005. Mangrove Algae in the Assessment of Estuarine Pollution. Ph.D. dissertation. University of Technology, Sydney. p.289.

    Google Scholar 

  • Menconi M, Benedetti-cecchi L, Cinelli F. 1999. Spatial and temporal variability in the distribution of algae and invertebrates on rocky shores in the northwest Mediterranean. J. Exp. Mar. Biol. Ecol., 233: 1–23.

    Article  Google Scholar 

  • Nan C R, Dong S L. 2004. Comparative studies on phosphorus uptake and growth kinetics of microalga Tetraselmis subcordiformis and the macroalga Ulva pertusa. J. Ocean. Univ. China, 3: 56–59. (in Chinese with English abstract)

    Article  Google Scholar 

  • Nedwell D B, Sage A S, Underwood G J C. 2002. Rapid assessment of macroalgal cover on intertidal sediments in a nitrified estuary. Sci., Total Environ., 285: 97–105.

    Article  Google Scholar 

  • Niggl W, Haas A F, Wild C. 2010. Benthic community composition affects O2 availability and variability in a Norghern Red Sea Fringing reef. Hydrobio., 644: 401–405.

    Article  Google Scholar 

  • Nishihara G N, Terada R. 2010. Species richness of marine macrophytes is correlated to a wave exposure gradient. Phycol. Res., 58: 280–292.

    Article  Google Scholar 

  • Peckol P, Rivers J S. 1995. Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan) to environmental disturbances associated with eutrophication. J. Exp. Mar. Biol. Ecol., 190: 1–16.

    Article  Google Scholar 

  • Pihl L, Magnusson G, Isaksson I, Wallentinus I. 1996. Distribution and growth dynamics of ephemeral macroalgae in shallow bays on the Swedish west coast. J. Sea Res., 35: 169–180.

    Article  Google Scholar 

  • Plus M, Auby I, Verlaque M, Levavasseur G. 2005. Seasonal variations in photosynthetic irradiance response curves of macrophytes from Mediterranean coastal lagoon. Aquat. Bot., 81: 157–173.

    Article  Google Scholar 

  • Pregnall A M, Rudy P P. 1985. Contribution of green macoalgal mats ( Enteromorpha spp.) to seasonal production in an estuary. Mar. Ecol. Prog. Ser., 24: 167–176.

    Article  Google Scholar 

  • Quartino M L, Schloss H K I R, Wiencke C. 2001. Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and substrate. Polar Biol., 24: 349–355.

    Article  Google Scholar 

  • Richardson M G. 1979. The distribution of Antarctic marine macro-algae related to depth and substrate. Br. Antarct. Sury. Bull., 49: 1–13.

    Google Scholar 

  • Santos R. 1993. A multivariate study of biotic and abiotic relationships in a subtidal algal stand. Mar. Ecol. Prog. Ser., 94: 181–190.

    Article  Google Scholar 

  • Shannon C E, Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.

    Google Scholar 

  • Shellem B H, Josselyn M N. 1982. Physiological ecology of Enteromorpha clathrata (Roth) Grev. on a salt marsh mudflat. Bot. Mar., 25: 541–549.

    Article  Google Scholar 

  • Solidoro C, Brando V E, Dejak C, Franco D, Pastres R, Pecenik G. 1997. Long term simulations of population dynamics of Ulva in the lagoon of Venice. Ecol. Model., 102: 259–272.

    Article  Google Scholar 

  • Sousa-Dias A, Melo R A. 2008. Long-term abundance patterns of macroalgae in relation to environmental variables in the Tagus Estuary (Portugal). Estuar. Coast. Shelf Sci., 76: 21–28.

    Article  Google Scholar 

  • Turpin D H. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol., 27: 14–20.

    Article  Google Scholar 

  • Villares R, Carballeira A. 2003. Seasonal variation in the concentrations of nutrients in two green macroalgae and nutrient levels in sediments in the Rías Baixas (NW Spain). Estuar. Coast. Shelf Sci., 58: 887–900.

    Article  Google Scholar 

  • Wallentinus I. 1984. Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar. Biol., 80: 215–225.

    Article  Google Scholar 

  • Wang Y J, Liu D Y, Dong Z J, Di B P, Shen X H. 2012. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China. Mar. Pollu t. Bull., 64: 2 708–2 719.

    Article  Google Scholar 

  • Williams S L, Carpenter R C. 1997. Grazing effects on nitrogen fixation in coral reef algal turfs. Mar. Biol., 130: 223–231.

    Article  Google Scholar 

  • Wing S R, Patterson M R. 1993. Effects of wave-induced lightflecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile Phaeophyceae). Mar. Biol., 116: 519–525.

    Article  Google Scholar 

  • Xu J T, Gao K S. 2008. Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea. J. Appl. Phycol., 20: 681–686.

    Article  Google Scholar 

  • Zeng C K. 2008. Seaweeds in Yellow Sea and Bohai Sea of China. Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Zhuang S H, Chen L X, Wang K M. 2001. The spatial distribution pattern of benthic rhodophyta in Yantai lithofacies intertidal zones of Yellow Sea. J. Yantai. Univ., 14(4): 255–263. (in Chinese with English abstract)

    Google Scholar 

  • Zhuang S, Chen L. 2003. Seasonal fluctuation of benthic algal community in the rock intertidals of Moon Bay, Yantai. J. Ocean Univ. Qingdao, 33: 719–726. (in Chinese with English abstract)

    Google Scholar 

  • Zuccarello G C, Yeates P H, Wright J T, Bartlett J. 2001. Population structure and physiological differentiation of haplotypes of Caloglossa leprieurii (Rhodophyta) in a mangrove intertidal zone. J. Phycol., 37: 235–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuying Han  (韩秋影).

Additional information

Supported by the National Natural Science Foundation of China (No. 41106099), the Yantai Science and Technology Bureau (No. 2011061), CAS Scientific Project of Innovation and Interdisciplinary, the Key Research Program of Chinese Academy of Sciences (No. KZZD-EW-14), and the Natural Science Foundation of Shandong Province (No. ZR2009EQ006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Liu, D. Temporal and spatial variations in the distribution of macroalgal communities along the Yantai coast, China. Chin. J. Ocean. Limnol. 32, 595–607 (2014). https://doi.org/10.1007/s00343-014-3236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3236-x

Keywords

Navigation