Skip to main content
Log in

An architecture for quantum networking of neutral atom processors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Development of a network for remote entanglement of quantum processors is an outstanding challenge in quantum information science. We propose and analyze a two-species architecture for remote entanglement of neutral atom quantum computers based on integration of optically trapped atomic qubit arrays with fast optics for photon collection. One of the atomic species is used for atom–photon entanglement, and the other species provides local processing. We compare the achievable rates of remote entanglement generation for two optical approaches: free space photon collection with a lens and a near-concentric, long working distance resonant cavity. Laser cooling and trapping within the cavity remove the need for mechanical transport of atoms from a source region, which allows for a fast repetition rate. Using optimized values of the cavity finesse, remote entanglement generation rates \(> 10^3~\mathrm{s}^{-1}\) are predicted for experimentally feasible parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The equation for C in [46] appears different than our definition, because those authors use \(\kappa , \gamma\) defined as FWHM/2.

References

  1. C. Monroe, R. Raussendorf, A. Ruthven, K.R. Brown, P. Maunz, L.-M. Duan, J. Kim, Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)

    Article  ADS  Google Scholar 

  2. M. Morgado, S. Whitlock, Quantum simulation and computing with Rydberg-interacting qubits. AVS Qu. Sci. 3, 021101 (2021)

    Article  Google Scholar 

  3. T.M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M.T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E.D. Dahl, O. Crawford, N.S. Blunt, B. Rogers, T. Noel, M. Saffman, Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022)

    Article  ADS  Google Scholar 

  4. D. Bluvstein, H. Levine, G. Semeghini, T.T. Wang, S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletić, M.D. Lukin, A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022)

    Article  ADS  Google Scholar 

  5. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  Google Scholar 

  6. A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H.J. Kimble, D.E. Chang, Exponential improvement in photon storage fidelities using subradiance and “selective radiance’’ in atomic arrays. Phys. Rev. X 7, 031024 (2017)

    Google Scholar 

  7. J.P. Covey, A. Sipahigil, S. Szoke, N. Sinclair, M. Endres, O. Painter, Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics. Phys. Rev. Appl. 11, 034044 (2019). https://doi.org/10.1103/PhysRevApplied.11.034044

    Article  ADS  Google Scholar 

  8. S.G. Menon, K. Singh, J. Borregaard, H. Bernien, Nanophotonic quantum network node with neutral atoms and an integrated telecom interface. New J. Phys. 22, 073033 (2020)

    Article  ADS  Google Scholar 

  9. T. Đorđević, P. Samutpraphoot, P.L. Ocola, H. Bernien, B. Grinkemeyer, I. Dimitrova, V. Vuletić, M.D. Lukin, Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science 373, 1511 (2021). https://doi.org/10.1126/science.abi9917

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C.H. Nguyen, A.N. Utama, N. Lewty, K. Durak, G. Maslennikov, S. Straupe, M. Steiner, C. Kurtsiefer, Single atoms coupled to a near-concentric cavity. Phys. Rev. A 96, 031802(R) (2017)

    Article  ADS  Google Scholar 

  11. A. Kawasaki, B. Braverman, E. Pedrozo-Peñafiel, C. Shu, S. Colombo, Z. Li, O. Özel, W. Chen, L. Salvi, A. Heinz, D. Levonian, D. Akamatsu, Y. Xiao, V. Vuletić, Geometrically asymmetric optical cavity for strong atom-photon coupling. Phys. Rev. A 99, 013437 (2019). https://doi.org/10.1103/PhysRevA.99.013437

    Article  ADS  Google Scholar 

  12. W. Huie, S.G. Menon, H. Bernien, J.P. Covey, Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities. Phys. Rev. Res. 3, 043154 (2021). https://doi.org/10.1103/PhysRevResearch.3.043154

    Article  Google Scholar 

  13. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter, Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  14. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  Google Scholar 

  15. M. Uphoff, M. Brekenfeld, G. Rempe, S. Ritter, An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. Appl. Phys. B 122, 46 (2016)

    Article  ADS  Google Scholar 

  16. M. Saffman, T.G. Walker, Creating single-atom and single-photon sources from entangled atomic ensembles. Phys. Rev. A 66, 065403 (2002)

    Article  ADS  Google Scholar 

  17. M. Saffman, T.G. Walker, Entangling single- and N-atom qubits for fast quantum state detection and transmission. Phys. Rev. A 72, 042302 (2005)

    Article  ADS  Google Scholar 

  18. L. Li, Y.O. Dudin, A. Kuzmich, Entanglement between light and an optical atomic excitation. Nature 498, 466 (2013)

    Article  ADS  Google Scholar 

  19. D. Petrosyan, K. Mølmer, Deterministic free-space source of single photons using Rydberg atoms. Phys. Rev. Lett. 121, 123605 (2018). https://doi.org/10.1103/PhysRevLett.121.123605

    Article  ADS  Google Scholar 

  20. A. Grankin, P.O. Guimond, D.V. Vasilyev, B. Vermersch, P. Zoller, Free-space photonic quantum link and chiral quantum optics. Phys. Rev. A 98, 043825 (2018). https://doi.org/10.1103/PhysRevA.98.043825

    Article  ADS  Google Scholar 

  21. Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D.J. Papoular, G.V. Shlyapnikov, M. Zhan, Entangling two individual atoms of different isotopes via Rydberg blockade. Phys. Rev. Lett. 119, 160502 (2017)

    Article  ADS  Google Scholar 

  22. I.I. Beterov, M. Saffman, Rydberg blockade, Förster resonances, and quantum state measurements with different atomic species. Phys. Rev. A 92, 042710 (2015)

    Article  ADS  Google Scholar 

  23. K. Singh, S. Anand, A. Pocklington, J.T. Kemp, H. Bernien, Dual-element, two-dimensional atom array with continuous-mode operation. Phys. Rev. X 12, 011040 (2022)

    Google Scholar 

  24. I.V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, C. Monroe, Multispecies trapped-ion node for quantum networking. Phys. Rev. Lett. 118, 250502 (2017). https://doi.org/10.1103/PhysRevLett.118.250502

    Article  ADS  Google Scholar 

  25. M. Kwon, M.F. Ebert, T.G. Walker, M. Saffman, Parallel low-loss measurement of multiple atomic qubits. Phys. Rev. Lett. 119, 180504 (2017)

    Article  ADS  Google Scholar 

  26. J.P. Covey, A. Sipahigil, M. Saffman, Microwave-to-optical conversion via four-wave-mixing in a cold ytterbium ensemble. Phys. Rev. A 100, 012307 (2019)

    Article  ADS  Google Scholar 

  27. A.E.B. Nielsen, K. Mølmer, Deterministic multimode photonic device for quantum-information processing. Phys. Rev. A 81, 043822 (2010)

    Article  ADS  Google Scholar 

  28. A.C.J. Wade, M. Mattioli, K. Mølmer, Single-atom single-photon coupling facilitated by atomic-ensemble dark-state mechanisms. Phys. Rev. A 94, 053830 (2016)

    Article  ADS  Google Scholar 

  29. I. Cohen, K. Mølmer, Deterministic quantum network for distributed entanglement and quantum computation. Phys. Rev. A 98, 030302 (2018). https://doi.org/10.1103/PhysRevA.98.030302

    Article  ADS  Google Scholar 

  30. J. Calsamiglia, N. Lütkenhaus, Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67 (2001)

    Article  ADS  Google Scholar 

  31. K.S. Choi, A. Goban, S.B. Papp, S.J. van Enk, H.J. Kimble, Entanglement of spin waves among four quantum memories. Nature 468, 412 (2010)

    Article  ADS  Google Scholar 

  32. Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang, H. Liu, M.-Y. Zheng, X.-P. Xie, W.-J. Zhang, L.-X. You, Z. Wang, T.-Y. Chen, Q. Zhang, X.-H. Bao, J.-W. Pan, Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240 (2020)

    Article  ADS  Google Scholar 

  33. A. Narla, S. Shankar, M. Hatridge, Z. Leghtas, K.M. Sliwa, E. Zalys-Geller, S.O. Mundhada, W. Pfaff, L. Frunzio, R.J. Schoelkopf, M.H. Devoret, Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016). https://doi.org/10.1103/PhysRevX.6.031036

    Article  Google Scholar 

  34. D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, C. Monroe, Entanglement of single-atom quantum bits at a distance. Nature 449, 68 (2007)

    Article  ADS  Google Scholar 

  35. D.N. Matsukevich, P. Maunz, D.L. Moehring, S. Olmschenk, C. Monroe, Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)

    Article  ADS  Google Scholar 

  36. J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, H. Weinfurter, Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012)

    Article  ADS  Google Scholar 

  37. L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, R. Blatt, Atom–atom entanglement by single-photon detection. Phys. Rev. Lett. 110, 083603 (2013)

    Article  ADS  Google Scholar 

  38. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M.S. Blok, L. Robledo, T.H. Taminiau, M. Markham, D.J. Twitchen, L. Childress, R. Hanson, Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86 (2013)

    Article  ADS  Google Scholar 

  39. D. Hucul, I.V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S.M. Clark, C. Monroe, Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37 (2015)

    Article  Google Scholar 

  40. A. Delteil, Z. Sun, Wb. Gao, E. Togan, S. Faelt, A. Imamoğlu, Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218 (2016)

    Article  Google Scholar 

  41. W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, H. Weinfurter, Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017)

    Article  ADS  Google Scholar 

  42. R. Stockill, M.J. Stanley, L. Huthmacher, E. Clarke, M. Hugues, A.J. Miller, C. Matthiesen, C. Le Gall, M. Atatüre, Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017). https://doi.org/10.1103/PhysRevLett.119.010503

    Article  ADS  Google Scholar 

  43. L.J. Stephenson, D.P. Nadlinger, B.C. Nichol, S. An, P. Drmota, T.G. Ballance, K. Thirumalai, J.F. Goodwin, D.M. Lucas, C.J. Ballance, High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020)

    Article  ADS  Google Scholar 

  44. M. Pompili, S.L.N. Hermans, S. Baier, H.K.C. Beukers, P.C. Humphreys, R.N. Schouten, R.F.L. Vermeulen, M.J. Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner, R. Hanson, Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259 (2021)

    Article  ADS  Google Scholar 

  45. C. Robens, S. Brakhane, W. Alt, F. Kleißler, D. Meschede, G. Moon, G. Ramola, A. Alberti, High numerical aperture (NA = 0.92) objective lens for imaging and addressing of cold atoms. Opt. Lett. 42, 1043 (2017). https://doi.org/10.1364/ol.42.001043

    Article  ADS  Google Scholar 

  46. A. Reiserer, G. Rempe, Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)

    Article  ADS  Google Scholar 

  47. The equation for \(C\) in [46] appears different than our definition because those authors use \(\kappa , \gamma\) defined as FWHM\(/2\)

  48. G. Cui, M.G. Raymer, Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime. Opt. Expr. 13, 9660 (2005)

    Article  ADS  Google Scholar 

  49. S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin, G. Rempe, A quantum-logic gate between distant quantum-network modules. Science 371, 614 (2021)

    Article  ADS  Google Scholar 

  50. C.H. Nguyen, A.N. Utama, N. Lewty, C. Kurtsiefer, Operating a near-concentric cavity at the last stable resonance. Phys. Rev. A 98, 063833 (2018). https://doi.org/10.1103/PhysRevA.98.063833

    Article  ADS  Google Scholar 

  51. D.L. Moehring, M.J. Madsen, K.C. Younge, J.R.N. Kohn, P. Maunz, L.-M. Duan, C. Monroe, B.B. Blinov, Quantum networking with photons and trapped atoms. J. Opt. Soc. AM. B 24, 300 (2007)

    Article  ADS  Google Scholar 

  52. E. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  53. K.M. Fortier, S.Y. Kim, M.J. Gibbons, P. Ahmadi, M.S. Chapman, Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007)

    Article  ADS  Google Scholar 

  54. J. Gallego, W. Alt, T. Macha, M. Martinez-Dorantes, D. Pandey, D. Meschede, Strong Purcell effect on a neutral atom trapped in an open fiber cavity. Phys. Rev. Lett. 121, 173603 (2018)

    Article  ADS  Google Scholar 

  55. G.T. Hickman, M. Saffman, Speed, retention loss, and motional heating of atoms in an optical conveyor belt. Phys. Rev. A 101, 063411 (2020)

    Article  ADS  Google Scholar 

  56. D.M. Harber, H.J. Lewandowski, J.M. McGuirk, E.A. Cornell, Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas. Phys. Rev. A 66, 053616 (2002)

    Article  ADS  Google Scholar 

  57. P. Treutlein, P. Hommelhoff, T. Steinmetz, T.W. Hänsch, J. Reichel, Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004)

    Article  ADS  Google Scholar 

  58. B. Merkel, K. Thirumalai, J.E. Tarlton, V.M. Schäfer, C.J. Ballance, T.P. Harty, D.M. Lucas, Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum. 90, 044702 (2019)

    Article  ADS  Google Scholar 

  59. A.G. Radnaev, Y.O. Dudin, R. Zhao, H.H. Jen, S.D. Jenkins, A. Kuzmich, T.A.B. Kennedy, A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010)

    Article  Google Scholar 

  60. A. Dréau, A. Tchebotareva, A.E. Mahdaoui, C. Bonato, R. Hanson, Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths. Phys. Rev. Appl. 9, 064031 (2018). https://doi.org/10.1103/PhysRevApplied.9.064031

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the U.S. Department of Energy Office of Science National Quantum Information Science Research Centers and support from NSF Award 2016136 for the QLCI center Hybrid Quantum Architectures and Networks. AS acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number PDF - 546105 - 2020]. CBY and AS contributed equally to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saffman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Fiber-coupling efficiency of a high-NA lens

To calculate the coupling efficiency of the scattered photons into a single-mode fiber, we assume that the fiber supports a Gaussian mode. In other words, we assume that a Gaussian mode can be coupled into the fiber with 100% efficiency. Thus, we find the field distribution of the radiating dipole after the collection lens, i.e., between the two lenses shown in Fig. 2, and calculate its overlap with a collimated Gaussian mode.

Referring to the geometry shown in the inset of Fig. 2, the three components of the electric field of a radiating dipole are given by

$$\begin{aligned} {\mathbf {E}}_{\sigma _{\pm }}(\theta ,\phi )= & {} \sqrt{\frac{3}{16\pi }} \frac{i e^{\imath (kr \pm \phi )}}{r} \left( \pm \cos {\theta } {\hat{\theta }} + i {\hat{\phi }}\right) \end{aligned}$$
(19)
$$\begin{aligned} {\mathbf {E}}_{\pi }(\theta ,\phi )= & {} \sqrt{\frac{3}{16\pi }} \frac{i e^{\imath kr}}{r} \sin {\theta } {\hat{\theta }}, \end{aligned}$$
(20)

where \(\phi\) is the azimuthal angle. After passing through the collection lens, the spherical coordinates are transformed in the following way:

$$\begin{aligned} {\hat{\theta }} \rightarrow {\hat{\rho }} \\ {\hat{r}} \rightarrow {\hat{z}}\\ {\hat{\phi }} \rightarrow {\hat{\phi }}. \end{aligned}$$

Converting Eqs. (19) and (20) to cylindrical coordinates gives the following expressions for the field amplitudes after the collection lens:

$$\begin{aligned}&{{\mathbf {E}}}_{\sigma \pm }(\rho ,\phi ) \nonumber \\&\quad =\sqrt{\frac{3}{16\pi }} \frac{i e^{\pm \imath \phi }f^{1/2}}{(f^2+\rho ^2)^{3/4}} \left[ \frac{\pm f}{(f^2+\rho ^2)^{1/2}} {\hat{\rho }} + i {\hat{\phi }}\right] , \end{aligned}$$
(21)
$$\begin{aligned}&{{\mathbf {E}}}_{\pi }(\rho ,\phi ) = \sqrt{\frac{3}{16\pi }} \frac{i e^{\pm \imath \phi }f^{1/2}}{(f^2+\rho ^2)^{3/4}} \frac{\rho }{(f^2+\rho ^2)^{1/2}}{\hat{\rho }}, \end{aligned}$$
(22)

where f is the focal length of the lens, \(\rho\) is the radial coordinate from the axis of the lens, and the factor of \(f^{1/2}/(f^2+\rho ^2)^{1/4}\)(\(\sqrt{\cos {\theta }}\) in spherical coordinates before the lens) accounts for the projection of the field onto the lens plane. Note that in both coordinate systems, the integral of the dipole field \(\mathbf{E}_D=\mathbf{E}_{\sigma \pm }\) or \(\mathbf{E}_D=\mathbf{E}_\pi\) over half of the full solid angle gives half of the total energy emitted by the dipole

$$\begin{aligned} \int _0^{\frac{\pi }{2}} d\theta \sin {\theta } \int _{0}^{2\pi }d\phi \, \left| {\mathbf {E}}_{D}(\theta ,\phi ) \right| ^2= & {} \frac{1}{2}, \end{aligned}$$
(23)
$$\begin{aligned} \int _{0}^{\infty } d\rho \rho \, \int _{0}^{2\pi }d\phi \, \left| {\mathbf {E}}_{D}(\rho ,\phi )\right| ^2= & {} \frac{1}{2}. \end{aligned}$$
(24)

The field of a circularly polarized Gaussian laser mode with waist w is given by

$$\begin{aligned}&{\mathbf {E}}_{G} = \frac{1}{\sqrt{\pi }w} e^\frac{-\rho ^2}{w^2} \left[ \left( \cos \phi \pm i \sin \phi \right) {\hat{\rho }} - \left( \sin \phi \mp i \cos \phi \right) {\hat{\phi }} \right] . \end{aligned}$$
(25)

We then calculate the overlap integral of the collimated dipole field, Eqs. (21) and (22), with the Gaussian mode of Eq.(25)

$$\begin{aligned} O =\bigg |\int _{0}^{\rho _{\mathrm{NA}}}d\rho \rho \, \int _{0}^{2\pi }d\phi \, {\mathbf {E}}_G \cdot {\mathbf {E}}_D^* \bigg |^2, \end{aligned}$$
(26)

where \(\rho _{\mathrm{NA}} = \frac{f \mathrm NA}{\sqrt{1-(\mathrm NA)^2}}\). From this integral, we see that the overlap of the \(\pi\)-polarized light emitted by the atom and the Gaussian mode is zero. Thus, the \(\pi\)-polarized photons do not couple into the single-mode fiber. We also calculate the overlap of the circularly polarized light emitted by the atom with the Gaussian mode which is shown in Fig. 2. As the NA of the lens changes, the beam waist w in Eq. (25) has to be adjusted to maximize the overlap integral.

We note that the transverse profile of the photons collected and collimated by the lens is not Gaussian. Also, the polarization of the photons changes gradually from circular at the center (\(\rho =0\)) to elliptical as \(\rho\) increases. Both of these effects contribute to decreasing the overlap integral in Eq. (26).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, C.B., Safari, A., Huft, P. et al. An architecture for quantum networking of neutral atom processors. Appl. Phys. B 128, 151 (2022). https://doi.org/10.1007/s00340-022-07865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07865-0

Navigation