Skip to main content
Log in

Arbitrary topological charge vortex beams from carbon dots random lasers

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication, optical micromanipulation, and quantum information processing. Here, we demonstrate vortex beams with flexible control of the topological charge and modes in a carbon dots random laser for the first time. Vortex beams with different types, including the Laguerre–Gaussian (LG), Bessel–Gaussian (BG), LG-superposition, and polarized vortex beams with topological charges up to 50, have been successfully achieved. Moreover, vortex beams can be well realized in carbon dots random lasers with different emission wavelengths covering from 465 to 612 nm. This work would not only enrich the types of vortex laser, especially for solution-processable lasers, but also provide a new route to realizing multi-color and wavelength-tunable vortex lasers.

Graphical abstract

摘要

涡旋光束在大容量光通信、光学微操控和量子信息处理等领域具有广阔的应用前景, 因此备受关注。在这里, 我们首次展示了在碳点随机激光器中灵活控制拓扑电荷和模式的涡旋光束。我们成功地实现了不同类型的涡旋光束, 包括拉盖尔-高斯 (LG) 、贝塞尔-高斯 (BG) 、LG-叠加和偏振涡旋光束, 拓扑电荷可达50阶。此外, 涡旋光束可以在465至612 nm不同发射波长的碳点随机激光器中很好地实现。这项工作不仅丰富了涡旋激光器的种类, 特别是可溶液加工激光器, 而且为实现多色和波长可调的涡旋激光器提供了一条新的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen YJ, Wang XJ, Xie ZW, Min CJ, Fu X, Liu Q, Gong ML, Yuan XC. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl. 2019;8:90. https://doi.org/10.1038/s41377-019-0194-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang XW, Nie ZQ, Liang Y, Wang J, Li T, Jia BH. Recent advances on optical vortex generation. Nanophotonics. 2018;7(9):1533. https://doi.org/10.1515/nanoph-2018-0072.

    Article  Google Scholar 

  3. Lian YD, Qi X, Wang YH, Bai ZX, Wang YL, Lu ZW. OAM beam generation in space and its applications: a review. Opt Lasers Eng. 2022;151:106923. https://doi.org/10.1016/j.optlaseng.2021.106923.

    Article  Google Scholar 

  4. Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, Ren YX, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6(7):488. https://doi.org/10.1038/nphoton.2012.138.

    Article  CAS  Google Scholar 

  5. Woerdemann M, Alpmann C, Esseling M, Denz C. Advanced optical trapping by complex beam shaping. Laser Photonics Rev. 2013;7(6):839. https://doi.org/10.1002/lpor.201200058.

    Article  CAS  Google Scholar 

  6. Liu SS, Lou YB, Jing JT. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat Commun. 2020;11(1):3875. https://doi.org/10.1038/s41467-020-17616-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lavery MPJ, Speirits FC, Barnett SM, Padgett MJ. Detection of a spinning object using light’s orbital angular momentum. Science. 2013;341(6154):537. https://doi.org/10.1126/science.1239936.

    Article  CAS  PubMed  Google Scholar 

  8. Ngcobo S, Litvin I, Burger L, Forbes A. A digital laser for on-demand laser modes. Nat Commun. 2013;4:2289. https://doi.org/10.1038/ncomms3289.

    Article  CAS  PubMed  Google Scholar 

  9. Sroor H, Huang YW, Sephton B, Naidoo D, Vallés A, Ginis V, Qiu VW, Ambrosio A, Capasso F, Forbes A. High-purity orbital angular momentum states from a visible metasurface laser. Nat Photonics. 2020;14(8):498. https://doi.org/10.1038/s41566-020-0623-z.

    Article  CAS  Google Scholar 

  10. Tuan PH, Hsieh YH, Lai YH, Huang KF, Chen YF. Characterization and generation of high-power multi-axis vortex beams by using off-axis pumped degenerate cavities with external astigmatic mode converter. Opt Express. 2018;26(16):20481. https://doi.org/10.1364/OE.26.020481.

    Article  CAS  PubMed  Google Scholar 

  11. Zang YM, Mirando A, Chong A. Spatiotemporal optical vortices with arbitrary orbital angular momentum orientation by astigmatic mode converters. Nanophotonics. 2022;11(4):745. https://doi.org/10.1515/nanoph-2021-0496.

    Article  Google Scholar 

  12. Wang C, Liu T, Ren Y, Shao QL, Dong HF. Generating optical vortex with large topological charges by spiral phase plates in cascaded and double-pass configuration. Optik. 2018;171:404. https://doi.org/10.1016/j.ijleo.2018.06.053.

    Article  Google Scholar 

  13. Zhou ZH, Li P, Ma JB, Zhang SR, Gu YZ. Generation and detection of optical vortices with multiple cascaded spiral phase plates. Photonics. 2022;9(5):354. https://doi.org/10.3390/photonics9050354.

    Article  Google Scholar 

  14. He MR, Liang YS, Yun X, Wang ZJ, Zhao TY, Wang SW, Bianco PR, Lei M. Generalized perfect optical vortices with free lens modulation. Photonics Res. 2023;11(1):27. https://doi.org/10.1364/PRJ.474065.

    Article  Google Scholar 

  15. Pinnell J, Rodríguez-Fajardo V, Forbes A. Probing the limits of orbital angular momentum generation and detection with spatial light modulators. J Opt. 2021;1: 015602. https://doi.org/10.1088/2040-8986/abcd02.

    Article  CAS  Google Scholar 

  16. Naidoo D, Roux FS, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A. Controlled generation of higher-order poincaré sphere beams from a laser. Nat Photonics. 2016;10(5):327. https://doi.org/10.1038/nphoton.2016.37.

    Article  CAS  Google Scholar 

  17. Zhou JX, Liu YC, Ke YG, Lou HL, Wen SC. Generation of airy vortex and airy vector beams based on the modulation of dynamic and geometric phases. Opt Lett. 2015;40(13):3193. https://doi.org/10.1364/OL.40.003193.

    Article  CAS  PubMed  Google Scholar 

  18. Lin D, Carpenter J, Feng YT, Jain S, Jung YM, Feng YJ, Zervas MN, Richardson DJ. Reconfigurable structured light generation in a multicore fibre amplifier. Nat Commun. 2020;11(1):3986. https://doi.org/10.1038/s41467-020-17809-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang ZF, Qiao XD, Midya B, Liu KV, Sun JB, Wu TW, Liu WJ, Agarwal R, Jornet JM, Longhi S, Litchinitser NM, Feng L. Tunable topological charge vortex microlaser. Science. 2020;368(6492):760. https://doi.org/10.1126/science.aba8996.

    Article  CAS  PubMed  Google Scholar 

  20. Dhankhar P, Devi R, Devi S, Chahar S, Dalal M, Taxak VB, Khatkar SP, Boora P. Synthesis and photoluminescent performance of novel europium(III) carboxylates with heterocyclic ancillary ligands. Rare Met. 2022;41(4):1342. https://doi.org/10.1007/s12598-019-01261-y.

    Article  CAS  Google Scholar 

  21. Zhang D, Ding CP, Zheng XY, Ye JZ, Chen ZH, Li JH, Yan ZJ, Jiang JH, Huang YJ. Ultrasensitive and accurate diagnosis of urothelial cancer by plasmonic AuNRs-enhanced fluorescence of near-infrared Ag2S quantum dots. Rare Met. 2022;41(11):3828. https://doi.org/10.1007/s12598-022-02074-2.

    Article  CAS  Google Scholar 

  22. Wu JH, Zhao W, Chen M, Liu CX, Chen JC, Chen Z. Recent advance in visible-light-driven photocatalysis on lead-free halide perovskites. Chin J Rare Met. 2022;46(1):96. https://doi.org/10.13373/j.cnki.cjrm.XY21040007.

    Article  Google Scholar 

  23. Hu YS, Song L, Tan C, Yang F, Wen Y, Wang LS, Li HX, Li X, Ma FY, Lu SY. Efficient sky-blue cesiumlead bromide light-emitting diodes with enhanced stability via synergistic interfacial induction and polymer scaffold inhibition. J Colloid Interface Sci. 2023;650:330. https://doi.org/10.1016/j.jcis.2023.06.156.

    Article  CAS  PubMed  Google Scholar 

  24. Stellinga D, Pietrzyk ME, Glackin JME, Wang Y, Bansal AK, Turnbull GA, Dholakia K, Samuel IDW, Krauss TF. An organic vortex laser. ACS Nano. 2018;12(3):2389. https://doi.org/10.1021/acsnano.7b07703.

    Article  CAS  PubMed  Google Scholar 

  25. Qiao Z, Gong CY, Liao YK, Wang CL, Chan KK, Zhu S, Kim M, Chen YC. Tunable optical vortex from a nanogroove-structured optofluidic microlaser. Nano Lett. 2022;22(3):1425. https://doi.org/10.1021/acs.nanolett.1c04065.

    Article  CAS  PubMed  Google Scholar 

  26. Keitel RC, le Feber B, Dettlaff KM, Brechbühler R, De Leo E, Rojo H, Norris DJ. Single-pulse measurement of orbital angular momentum generated by microring lasers. ACS Nano. 2021;15(12):19185. https://doi.org/10.1021/acsnano.1c03792.

    Article  CAS  PubMed  Google Scholar 

  27. Sun WZ, Liu YL, Qu GY, Fa YB, Dai W, Wang YH, Song QH, Han JC, Xiao SM. Lead halide perovskite vortex microlasers. Nat Commun. 2020;11(1):4862. https://doi.org/10.1038/s41467-020-18669-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu YL, Mo RX, Qi CY, Ren Z, Jia XZ, Kan ZG, Li CL, Wang F. Dual-property blue and red emission carbon dots for Fe(III) ions detection and cellular imaging. Rare Met. 2021;40(7):1957. https://doi.org/10.1007/s12598-020-01506-1.

    Article  CAS  Google Scholar 

  29. Li F, Wang CL, Ding S, Yang K, Liu CJ, Tian F. Photoelectrochemical performance of TiO2 nanotube arraysby in situ decoration with different initial states. Rare Met. 2021;40(3):720. https://doi.org/10.1007/s12598-019-01363-7.

    Article  CAS  Google Scholar 

  30. Li L, Li YT, Ye Y, Guo RT, Wang AN, Zou GQ, Hou HS, Ji XB. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano. 2021;15(4):6872. https://doi.org/10.1021/acsnano.0c10624.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Li S, Xu LQ, Momen R, Deng WT, Hu JG, Zou GQ, Hou HS, Ji XB. High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv Energy Mater. 2022;12(26):2200665. https://doi.org/10.1002/aenm.202200665.

    Article  CAS  Google Scholar 

  32. Hashemi SS, Ghavami Sabouri S, Khorsandi A. In situmeasurement of laser beam quality. Appl Phys B. 2017;123(9):233. https://doi.org/10.1007/s00340-017-6811-y.

    Article  CAS  Google Scholar 

  33. Zhang YQ, Song HQ, Wang L, Yu JK, Wang BY, Hu YS, Zang SQ, Yang B, Lu SY. Solid-state red laser with a single longitudinal mode from carbon dots. Angew Chem Int Ed. 2021;60(48):25514. https://doi.org/10.1002/anie.202111285.

    Article  CAS  Google Scholar 

  34. Zhang YQ, Wang JP, Wang L, Fu R, Sui LZ, Song HQ, Hu YS, Lu SY. Carbon dots with blue-to-near-infrared lasing for colorful speckle-free laser imaging and dynamical holographic display. Adv Mater. 2023;35(31):2302536. https://doi.org/10.1002/adma.202302536.

    Article  CAS  Google Scholar 

  35. Zhang YQ, Wang L, Hu YS, Sui LZ, Cheng LW, Lu SY. Centralized excited states and fast radiation transitions reduce laser threshold in carbon dots. Small. 2023;19(24):2207983. https://doi.org/10.1002/smll.202207983.

    Article  CAS  Google Scholar 

  36. Bencheikh A, Fromager M, Ameur KA. Generation of Laguerre–Gaussian LGp0 beams using binary phase diffractive optical elements. Appl Opt. 2014;53(21):4761. https://doi.org/10.1364/AO.53.004761.

    Article  PubMed  Google Scholar 

  37. Ma XY, Ye J, Zhang Y, Xu JM, Wu J, Yao TF, Leng JY, Zhou P. Vortex random fiber laser with controllable orbital angular momentum mode. Photonics Res. 2021;9(2):266. https://doi.org/10.1364/PRJ.413455.

    Article  Google Scholar 

  38. Saadati-Sharafeh F, Amiri P, Akhlaghi EA, Azizian-Kalandaragh Y. A new criterion for self-healing quantification of structured light beams. J Opt. 2023;25(3):035604. https://doi.org/10.1088/2040-8986/acb06a.

    Article  Google Scholar 

  39. Vetter C, Steinkopf R, Bergner K, Ornigotti M, Nolte S, Gross H, Szameit A. Realization of free-space long-distance self-healing bessel beams. Laser Photonics Rev. 2019;13(10):1900103. https://doi.org/10.1002/lpor.201900103.

    Article  Google Scholar 

  40. Chen J, Wan CH, Zhan QW. Vectorial optical fields: recent advances and future prospects. Sci Bull. 2018;63(1):54. https://doi.org/10.1016/j.scib.2017.12.014.

    Article  CAS  Google Scholar 

  41. Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications. J Opt. 2018;20(12): 123001. https://doi.org/10.1088/2040-8986/aaeb7d.

    Article  Google Scholar 

  42. Yang YJ, Ren XY, Chen MZ, Arita Y, Rosales-Guzmán C. Optical trapping with structured light: a review. Adv Photon. 2021;3(3): 034001. https://doi.org/10.1117/1.AP.3.3.034001.

    Article  CAS  Google Scholar 

  43. Parigi V, D’Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat Commun. 2015;6:7706. https://doi.org/10.1038/ncomms8706.

    Article  CAS  PubMed  Google Scholar 

  44. Malik HK, Punia S. Investigating pair-production by Breit–Wheeler process in a collisional plasma. Laser Phys Lett. 2022;19(11): 116003. https://doi.org/10.1088/1612-202X/ac92de.

    Article  Google Scholar 

  45. Bauer T, Orlov S, Peschel U, Banzer P, Leuchs G. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat Photonics. 2014;8(1):23. https://doi.org/10.1038/nphoton.2013.289.

    Article  CAS  Google Scholar 

  46. Shen DH, He T, Yu XB, Zhao DM. Mode conversionand transfer of orbital angular momentum between Hermite-Gaussian and Laguerre–Gaussian beams. IEEE Photon J. 2022;14(1):6510506. https://doi.org/10.1109/JPHOT.2022.3140359.

    Article  Google Scholar 

  47. Bu YZ, Wang X, Li Y, Du YL, Gong QX, Zheng GC, Ma FY. Tunable edge enhancement by higher-order spiral Fresnel incoherent correlation holography system. J Phys D Appl Phys. 2021;54(12):125103. https://doi.org/10.1088/13616463/abd12e.

    Article  CAS  Google Scholar 

  48. Xu TX, He JR, Ren H, Zhao ZC, Ma GQ, Gong QX, Yang SN, Dong L, Ma FY. Edge contrast enhancementof fresnel incoherent correlation holography (FINCH) microscopy by spatial light modulator aided spiral phase modulation. Opt Express. 2017;25(23):29207. https://doi.org/10.1364/OE.25.029207.

    Article  Google Scholar 

  49. Zhou Y, Feng ST, Nie SP, Ma J, Yuan CJ. Image edge enhancement using airy spiral phase filter. Opt Express. 2016;24(22):25258. https://doi.org/10.1364/OE.24.025258.

    Article  PubMed  Google Scholar 

  50. Zhao LN, Yuan Y, Tong LY, Cai FX, Zhang WY, Cai YJ. Broadly tunable optical vortex beam in a diode-pumped Yb:CALGO laser. Opt Laser Technol. 2021;141:107134. https://doi.org/10.1016/j.optlastec.2021.107134.

    Article  CAS  Google Scholar 

  51. Liu QY, Zhao YG, Ding MM, Yao WC, Fan XL, Shen DY. Wavelength-and OAM-tunable vortex laser with a reflective volume Bragg grating. Opt Express. 2017;25(19):23312. https://doi.org/10.1364/OE.25.023312.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science and Technology Major Project of Henan Province (No. 221100230300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiu-Ru He or Yong-Sheng Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material:

Supplementary file1 (DOCX 6220 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XD., Mi, XB., He, JR. et al. Arbitrary topological charge vortex beams from carbon dots random lasers. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02660-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02660-6

Keywords

Navigation