Skip to main content
Log in

Dual-band reflective polarization converter based on slotted wire resonators

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A dual-band and high-efficiency reflective linear polarization converter composed of a layer of slotted metal wires has been proposed. Both the simulated and experimental results indicate that the structure can convert a linearly polarized wave to its cross-polarized state for two distinct frequency bands under normal incidence: 9.8–15.1 and 19.2–25.7 GHz. This phenomenon is attributed to a resonance that corresponds to the “trapped mode” at 15.8 GHz. This mode is stable with structural parameters and incident angle at a relatively wide range, and thus becomes promising for dual-band (also multiband) devices design. By surface current distribution and electric field analysis, the operation mechanism has been illuminated, especially for the “trapped mode”, identified by the equally but also oppositely directed currents in each unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, H. Yang, IEEE. T. Antenn. Propag. 61, 1479 (2013)

    Article  ADS  Google Scholar 

  2. IV. Lindell and IV. Lindell, Electromagnetic waves in chiral and Bi-isotropic media[M] (1994)

  3. R.A. Shelby, D.R. Smith, S. Schultz, Science. 292, 77 (2001)

    Article  ADS  Google Scholar 

  4. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Räisänen, IEEE. T. Antenn. Propag. 56, 1624 (2008)

    Article  ADS  Google Scholar 

  5. D. Schurig, J.J. Mock, B.J. Justice, B.J. Cummer, S.A. Pendry, J.B. Starr, D.R. Smith, Science. 314, 977 (2006)

    Article  ADS  Google Scholar 

  6. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, M. Wegener, Science. 325, 1513 (2009)

    Article  ADS  Google Scholar 

  7. Q. Cheng, T.J. Cui, Phys. Rev. B. 73, 3104 (2006)

    Google Scholar 

  8. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, L. Zhou, Phys. Rev. A. 80, 92 (2009)

    Google Scholar 

  9. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Luo, Appl. Phys. Lett. 102, 107 (2013)

    Google Scholar 

  10. J. Hao, Y. Yuan, L. Ran, T. Jiang, J.A. Kong, C.T. Chan, L. Zhou, Phys. Rev. Lett. 99, 063908 (2007)

    Article  ADS  Google Scholar 

  11. H. Chen, H. Ma, J. Wang, S. Qu, Y. Pang, M. Yan, Y. Li, Appl. Phys. A. 122, 1 (2016)

    ADS  Google Scholar 

  12. X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, W. Wen, Appl. Phys. Lett. 108, 183502 (2016)

    Article  ADS  Google Scholar 

  13. Y. Liu, S. Xia, H. Shi, A. Zhang, Z. Xu, Appl. Phys. B. 122, 178 (2016)

    Article  ADS  Google Scholar 

  14. F. Ling, G. Yao, J. Yao, Sci. Rep. 6, 34994 (2016)

    Article  ADS  Google Scholar 

  15. H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, M. An. Zhang, Y. Yan, Li, J. Appl. Phys. 15, 115 (2014)

    Google Scholar 

  16. Y. Hirota, R. Hattori, M. Tani, M. Hangyo, Opt. Express. 14, 4486 (2006)

    Article  ADS  Google Scholar 

  17. R. Shimano, H. Nishimura, T. Sato, Jpn. J. Appl. Phys. 44, L676 (2005)

    Article  ADS  Google Scholar 

  18. J. Badoz, M. Billardon, J.C. Canit, M.F. Russel, J. Optics. 8, 373 (2002)

    Article  ADS  Google Scholar 

  19. Y. Liu, S. Xia, H. Shi, A. Zhang, Z. Xu, Appl. Phys. B. 122, 6 (2016)

    ADS  Google Scholar 

  20. L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, L. Deng, Sci. Rep. 6, 33826 (2016)

    Article  ADS  Google Scholar 

  21. B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, Z. Zhu, J. Appl. Phys. 119, 183103 (2016)

    Article  ADS  Google Scholar 

  22. M. Feng, J. Wang, H. Ma, W. Mo, H. Ye, S. Qu, J. Appl. Phys. 114, 1682 (2013)

    Google Scholar 

  23. L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, L. Deng, IEEE. Antenn. Wirel. Pr. 14, 1157 (2015)

    Article  Google Scholar 

  24. X. Gao, X. Han, W.P. Cao, H.O. Li, H.F. Ma, T.J. Cui, IEEE. T. Antenn. Propag. 63, 1 (2015)

    Article  Google Scholar 

  25. J. Zhou, E.N. Economon, T. Koschny, Soukoulis, Opt. Lett. 31 C. M., 3620 (2006)

  26. Z. Zhang, S. Li, X. Cao, J. Gao, Radioengineering. 25, 436 (2016)

    Article  Google Scholar 

  27. N. Papasimakis, N.I. Zheludev, Opt. Photonics News. 20, 22 (2009)

    Article  Google Scholar 

  28. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  29. S. Prosvirnin, S. Zouhdi, Advances in Electromagnetics of Complex Media and Metamaterials, vol. 281 (Netherlands, Springer, (2002)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the supports from the National Natural Science Foundation of China under Grant no. 61471097, the Program for Changjiang Scholars and Innovative Research Team in University and the Program for New Century Excellent Talents in University (NCET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiheng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhang, L., Zhou, P. et al. Dual-band reflective polarization converter based on slotted wire resonators. Appl. Phys. B 124, 28 (2018). https://doi.org/10.1007/s00340-018-6900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6900-6

Navigation