Skip to main content
Log in

Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5–20.0 GHz) and Ka (28.8–34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, IEEE Antennas Propag. Mag. 54, 10 (2012)

    Article  Google Scholar 

  2. Z. Jaksic, S. Vukovic, J. Matovic, D. Tanaskovic, Materials 4, 1 (2011)

    Article  ADS  Google Scholar 

  3. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Science 334, 333 (2011)

    Article  ADS  Google Scholar 

  4. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Nat. Mater. 11, 426 (2012)

    Article  ADS  Google Scholar 

  5. S.C. Jiang, X. Xiong, Y.S. Hu, S.W. Jiang, Y.H. Hu, D.H. Xu, R.W. Peng, M. Wang, Phys. Rev. B 91, 125421 (2015)

    Article  ADS  Google Scholar 

  6. M. Kang, F. Liu, T.F. Li, Q.H. Guo, J. Li, J. Chen, Opt. Lett. 38, 3086 (2013)

    Article  ADS  Google Scholar 

  7. S. Liu, T.J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W.X. Tang, C. Ouyang, X.Y. Zhou, H. Yuan, H.F. Ma, W.X. Jiang, J. Han, W. Zhang, Q. Cheng, Light Sci. Appl. 5, e16076 (2016)

    Article  Google Scholar 

  8. J.Y. Chin, M. Lu, T.J. Cui, Appl. Phys. Lett. 93, 251903 (2008)

    Article  ADS  Google Scholar 

  9. Y. Zhao, A. Alù, Phys. Rev. B. 84, 205428 (2013)

    Article  ADS  Google Scholar 

  10. M. Mutlu, A.E. Akosman, A.E. Serebryannikov, E. Ozbay, Opt. Lett. 36, 1653 (2011)

    Article  ADS  Google Scholar 

  11. Y.J. Chiang, T.J. Yen, Appl. Phys. Lett. 102, 011129 (2013)

    Article  ADS  Google Scholar 

  12. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H.F. Ma, T.J. Cui, Appl. Phys. Lett. 102, 191905 (2013)

    Article  ADS  Google Scholar 

  13. Z. Wei, Y. Cao, Y. Fan, X. Yu, H. Li, Appl. Phys. Lett. 99, 221907 (2011)

    Article  ADS  Google Scholar 

  14. M. Feng, J. Wang, H. Ma, W. Mo, H. Ye, S. Qu, J. Appl. Phys. 114, 074508 (2013)

    Article  ADS  Google Scholar 

  15. S.C. Jiang, X. Xiong, Y.S. Hu, Y.H. Hu, G.B. Ma, R.W. Peng, C. Sun, M. Wang, Phys. Rev. X. 4, 021026 (2014)

    Google Scholar 

  16. C. Pfeiffer, A. Grbic, Appl. Phys. Lett. 102, 231116 (2013)

    Article  ADS  Google Scholar 

  17. H.L. Zhu, S.W. Cheung, K.L. Chung, T.I. Yuk, IEEE Trans. Antennas Propag. 61, 4615 (2013)

    Article  ADS  Google Scholar 

  18. H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, Y. Li, J. Appl. Phys. 115, 154504 (2014)

    Article  ADS  Google Scholar 

  19. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, Science 340, 1304 (2013)

    Article  ADS  Google Scholar 

  20. H.F. Ma, G.Z. Wang, G.S. Kong, T.J. Cui, Opt. Mater. Express 4, 1717 (2014)

    Article  Google Scholar 

  21. H. Shi, J. Li, A. Zhang, J. Wang, Z. Xu, Opt. Express 22, 20973 (2014)

    Article  ADS  Google Scholar 

  22. Y.Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R.Z. Gong, M. Bhaskaran, S. Sriram, D. Abbott, Appl. Phys. Lett. 105, 181111 (2014)

    Article  ADS  Google Scholar 

  23. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, H. Zhang, Opt. Express 22, 29143 (2014)

    Article  ADS  Google Scholar 

  24. H.Y. Chen, J.F. Wang, H. Ma, S.B. Qu, J.Q. Zhang, Z. Xu, A.X. Zhang, Chin. Phys. B 24, 014201 (2015)

    Article  ADS  Google Scholar 

  25. J. Hao, Y. Yuan, L. Ran, T. Jiang, J.A. Kong, C.T. Chan, L. Zhou, Phys. Rev. Lett. 99, 063908 (2007)

    Article  ADS  Google Scholar 

  26. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation (NSF) of China (Grant Nos. 61471292, 61471388, 61331005, 41390454, and 41404095), the National Basic Research Program of China (973 Program) under Grant No. 2015CB654602, and the 111 Project under Grant No. B14040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xia, S., Shi, H. et al. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies. Appl. Phys. B 122, 178 (2016). https://doi.org/10.1007/s00340-016-6454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6454-4

Keywords

Navigation