Skip to main content
Log in

Design of ultrathin dual-resonant reflective polarization converter with customized bandwidths

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, an ultrathin dual-resonant reflective polarization converter is proposed to obtain customized bandwidths using precise space-filling technique to its top geometry. The unit cell of the dual-resonant prototype consists of conductive square ring with two diagonally arranged slits, supported by metal-backed thin dielectric layer. It offers two narrow bands with fractional bandwidths of 3.98 and 6.65% and polarization conversion ratio (PCR) of 97.16 and 98.87% at 4.52 and 6.97 GHz, respectively. The resonances are brought in proximity to each other by changing the length of surface current paths of the two resonances. By virtue of this mechanism, two polarization converters with two different types of bandwidths are obtained. One polarization converter produces a full-width at half-maxima PCR bandwidth of 34%, whereas another polarization converter produces a 90% PCR bandwidth of 19%. All the proposed polarization converters are insensitive to wide variations of incident angle for both TE- and TM-polarized incident waves. Measured results show good agreement with the numerically simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Gao, X. Han, W.P. Cao, H. Li, H. Ma, T. Cui, Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface. IEEE Trans. Antennas Propag. 63, 3522–3530 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. H.X. Xu, S. Tang, G.M. Wang, T. Cai, W. Huang, Q. He, S. Sun, L. Zhou, Multifunctional microstrip array combining a linear polarizer and focusing metasurface. IEEE Trans. Antennas Propag. 64, 3676–3682 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Perret, Displacement sensor based on radar cross-polarization measurements. IEEE Trans. Microw. Theory Tech. 65, 955–966 (2017)

    Article  ADS  Google Scholar 

  4. W. Li, S. Xia, B. He, J. Chen, H. Shi, A. Zhang, Z. Li, Z. Xu, A reconfigurable polarization converter using active metasurface and its application in horn antenna. IEEE Trans. Antennas Propag. 64, 5281–5290 (2016)

    Article  ADS  Google Scholar 

  5. Y. Jia, Y. Liu, Y.J. Guo, K. Li, S.X. Gong, Broadband polarization rotation reflective surfaces and their applications to RCS reduction. IEEE Trans. Antennas Propag. 64, 179–188 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. E. Hecht, Optics, 4th edn. (Addison Wesley, San Francisco, 2001)

    Google Scholar 

  7. N.K. Grady et al., Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013)

    Article  ADS  Google Scholar 

  8. X. Huang, D. Yang, H. Yang, Multiple-band reflective polarization converter using U-shaped metamaterial. J. Appl. Phys. 115, 103505 (2014)

    Article  ADS  Google Scholar 

  9. H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, Y. Li, Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 115, 154504 (2014)

    Article  ADS  Google Scholar 

  10. Y. Ye, S. He, 90\(^{\circ }\) polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl. Phys. Lett. 96, 203501 (2010)

    Article  ADS  Google Scholar 

  11. Z. Wei, Y. Cao, Y. Fan, X. Yu, H. Li, Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl. Phys. Lett. 99, 221907 (2011)

    Article  ADS  Google Scholar 

  12. H. Chen et al., Ultra-wideband transparent 90\(^{\circ }\) polarization conversion metasurfaces. Appl. Phys. A 122, 463 (2016)

    Article  ADS  Google Scholar 

  13. J. Hao, Y. Yuan, L. Ran et al., Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007)

    Article  ADS  Google Scholar 

  14. M.D. Feng, J.F. Wang, H. Ma, W.D. Mo, H.J. Ye, S.B. Qu, Broadband polarization rotator based on multi-order plasmon resonances and high impedance surfaces. J. Appl. Phys. 114, 074508 (2013)

    Article  ADS  Google Scholar 

  15. N. Yu et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011)

    Article  ADS  Google Scholar 

  16. B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, Z. Zhu, Dual-band high-efficiency polarization converter using an anisotropic metasurface. J. Appl. Phys. 119, 183103 (2016)

    Article  ADS  Google Scholar 

  17. D. Kundu, A. Mohan, A. Chakrabarty, Ultrathin high-efficiency X-band reflective polarization converter using sunken double arrowhead metasurface, in 2016 Asia-Pacific Microwave Conference (APMC), pp. 1–4 (2016)

  18. L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, L. Deng, Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator. Opt. Mater. Express 6, 1393–1404 (2016)

    Article  Google Scholar 

  19. Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Hadar, J.L. Pelouard, Plasmonic planar antenna for wideband and efficient linear polarization conversion. Appl. Phys. Lett. 104, 111105 (2014)

    Article  ADS  Google Scholar 

  20. S.C. Jiang, X. Xiong, Y.S. Hu, Y.H. Hu, G.B. Ma, R.W. Peng, C. Sun, M. Wang, Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X 4, 021026 (2014)

    Google Scholar 

  21. J.X. Zhao, B.X. Xiao, X.J. Huang, H.L. Yang, Multiple-band reflective polarization converter based on complementary L-shaped metamaterial. Microw. Opt. Technol. Lett. 57, 978–983 (2015)

    Article  Google Scholar 

  22. P. Xu, S.Y. Wang, W. Geyi, A linear polarization converter with near unity efficiency in microwave regime. J. Appl. Phys. 121, 144502 (2017)

    Article  ADS  Google Scholar 

  23. L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, L. Deng, Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances. IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015)

    Article  ADS  Google Scholar 

  24. H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, F. Martn, Ultra-wideband and broad-angle linear polarization conversion metasurface. J. Appl. Phys. 121, 174902 (2017)

    Article  ADS  Google Scholar 

  25. H. Li, B. Xiao, X. Huang, H. Yang, Multiple-band reflective polarization converter based on deformed F-shaped metamaterial. Phys. Scr. 90, 035806 (2015)

    Article  ADS  Google Scholar 

  26. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, J. Tian, Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl. Phys. Lett. 103, 223102 (2013)

    Article  ADS  Google Scholar 

  27. D. Kundu, A. Mohan, A. Chakrabarty, Reduction of cross-polarized reflection to enhance dual-band absorption. J. Appl. Phys. 120, 205103 (2016)

    Article  ADS  Google Scholar 

  28. C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1999)

    Google Scholar 

  29. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  30. D. Kundu, A. Mohan, A. Chakraborty, Ultrathin polarization independent absorber with enhanced bandwidth by incorporating Giusepe Peano fractal in square ring. Microw. Opt. Technol. Lett. 57, 1072–1078 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debidas Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, D., Mohan, A. & Chakrabarty, A. Design of ultrathin dual-resonant reflective polarization converter with customized bandwidths. Appl. Phys. A 123, 621 (2017). https://doi.org/10.1007/s00339-017-1233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1233-6

Navigation