Skip to main content
Log in

Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of ~ 10−7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2–3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Beiersdorfer, Annu. Rev. Astron. Astrophys. 41, 343–390 (2003)

    Article  ADS  Google Scholar 

  2. A. Momose, T. Takeda, Y. Itai, K. Hirano, Nat. Med. 2, 473–475 (1996)

    Article  Google Scholar 

  3. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406, 752–757 (2000)

    Article  ADS  Google Scholar 

  4. A.H. Chin, R.W. Schoenlein, T.E. Glover, P. Balling, W.P. Leemans, C.V. Shank, Phys. Rev. Lett. 83, 336 (1999)

    Article  ADS  Google Scholar 

  5. M. Chergui, A.H. Zewail, Chem. Phys. Chem. 10, 28–43 (2009)

    Article  Google Scholar 

  6. M. Kozina, T. Hu, J.S. Wittenberg, E. Szilagyi, M. Trigo, T.A. Miller, C. Uher, A. Damodaran, L. Martin, A. Mehta, J. Corbett, J. Safranek, D.A. Reis, A.M. Lindenberg, Struct. Dyn. 1, 034301 (2014)

    Article  Google Scholar 

  7. A.M. March, A. Stickrath, G. Doumy, E.P. Kanter, B. Krässig, S.H. Southworth, K. Attenkofer, C.A. Kurtz, L.X. Chen, L. Young, Rev. Sci. Instrum. 82, 073110 (2011)

    Article  ADS  Google Scholar 

  8. T. Pfeifer, C. Spielmann, G. Gerber, Rep. Prog. Phys 69, 443–505 (2006)

    Article  ADS  Google Scholar 

  9. F. Zamponi, Z. Ansari, C.V. Korff Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, M. Haschke, Appl. Phys. A 96, 51–58 (2009)

    Article  ADS  Google Scholar 

  10. A.Y. Faenov, J. Colgan, S.B. Hansen, A. Zhidkov, T.A. Pikuz, M. Nishiuchi, S.A. Pikuz, I.Y. Skobelev, J. Abdallah, H. Sakaki, A. Sagisaka, A.S. Pirozhkov, K. Ogura, Y. Fukuda, M. Kanasaki, N. Hasegawa, M. Nishikino, M. Kando, Y. Watanabe, T. Kawachi, S. Masuda, T. Hosokai, R. Kodama, K. Kondo, Sci. Rep. 5, 13436 (2015)

    Article  ADS  Google Scholar 

  11. S. Lee, I.W. Choi, I. Sohn, K. Lee, G.I. Shim, Y.U. Jeong, B.H. Han, W.J. Ryu, H. Kim, H. Cha, J. Korean Phys. Soc. 67, 800–806 (2015)

    Article  ADS  Google Scholar 

  12. Y. Jiang, T. Lee, W. Li, G. Ketwaroo, C.G. Rose-Petruck, Opt. Lett 27, 963–965 (2002)

    Article  ADS  Google Scholar 

  13. C. Reich, C.M. Laperle, X. Li, B. Ahr, F. Benesch, C.G. Rose-Petruck, Opt. Lett. 32, 427–429 (2007)

    Article  ADS  Google Scholar 

  14. W. Fullagar, M. Harbst, S. Canton, J. Uhlig, M. Walczak, C.-G. Wahlström, V. Sundström, Rev. Sci. Instrum. 78, 115105 (2007)

    Article  ADS  Google Scholar 

  15. L. Miaja-Avila, G.C. O’Neil, J. Uhlig, C.L. Cromer, M.L. Dowell, R. Jimenez, A.S. Hoover, K.L. Silverman, J.N. Ullom, Struct. Dyn. 2, 024301 (2015)

    Article  Google Scholar 

  16. M. Iqbal, Z. Urrehman, H. Im, J.G. Son, O. Seo, H. Stiel, P.V. Nickles, D.Y. Noh, K.A. Janulewicz, Appl. Phys. B 116, 305311 (2014)

    Article  Google Scholar 

  17. B. Hou, J. Easter, A. Mordovanakis, K. Krushelnick, J.A. Nees, Opt. Express 16, 17695–17705 (2008)

    Article  ADS  Google Scholar 

  18. C.L. Rettig, W.M. Roquemore, J.R. Gord, Appl. Phys. B 93, 365–372 (2008)

    Article  ADS  Google Scholar 

  19. Y. Hironaka, K.G. Nakamura, K. Kondo, Appl. Phys. Lett. 77, 4110 (2000)

    Article  ADS  Google Scholar 

  20. B. Hou, A. Mordovanakis, J. Easter, K. Krushelnick, J.A. Nees, Appl. Phys. Lett. 93, 201503 (2008)

    Article  ADS  Google Scholar 

  21. J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients (National Institute of Standards and Technology, 1996)

  22. P.M. Nilson, J.R. Davies, W. Theobald, P.A. Jaanimagi, C. Mileham, R.K. Jungquist, C. Stoeckl, I.A. Begishev, A.A. Solodov, J.F. Myatt, J.D. Zuegel, T.C. Sangster, R. Betti, D.D. Meyerhofer, Phys. Rev. Lett. 108, 085002 (2012)

    Article  ADS  Google Scholar 

  23. J. Weisshaupt, V. Juve, M. Holtz, S.A. Ku, M. Woerner, T. Elsaesser, S. Alisauskas, A. Pugzlys, A. Baltuska, Nat. Photon 8, 927–930 (2014)

    Article  ADS  Google Scholar 

  24. M. Hagedorn, J. Kutzner, G. Tsilimis, H. Zacharias, Appl. Phys. B 77, 49–57 (2003)

    Article  Google Scholar 

  25. Y. Danon, B. Sones, R. Block, Nucl. Instr. Methods Phys. Res. A 524, 287–294 (2004)

    Article  ADS  Google Scholar 

  26. W. Lu, M. Nicoul, U. Shymanovich, A. Tarasevitch, P. Zhou, K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. E 80, 026404 (2009)

    Article  ADS  Google Scholar 

  27. J. Badziak, J. Makowski, P. Parys, L. Ryc, J. Wolowski, E. Woryna, A.B. Vankov, J. Phys. D Appl. Phys. 34, 1885–1891 (2001)

    Article  ADS  Google Scholar 

  28. M. Schnürer, M.P. Kalashnikov, P.V. Nickles, Th Schlegel, W. Sandner, N. Demchenko, R. Nolte, P. Ambrosi, Phys. Plasmas 2, 3106 (1995)

    Article  ADS  Google Scholar 

  29. S.A. Pikuz, O.V. Chefonov, S.V. Gasilov, P.S. Komarov, A.V. Ovchinnikov, I.Yu.. Skobelev, S. Yu., M.V. Ashitkov, A. Agranat, Zigler, A.Y. Faenov, Laser part. Beams 28, 393–397 (2010)

    Google Scholar 

  30. M. Hada, J. Matsuo, Appl. Phys. B 99, 173–179 (2010)

    Article  ADS  Google Scholar 

  31. D. Salzmann, C. Reich, I. Uschmann, E. Förster, Phys. Rev. E 65, 036402 (2002)

    Article  ADS  Google Scholar 

  32. W.L. Kruer, The physics of laser plasma interactions. (Westview Press, Boulder Co, 2003)

    Google Scholar 

  33. A. Egbert, B.N. Chichkov, Proc. SPIE 4978, 92 (2003)

    Article  ADS  Google Scholar 

  34. D. Papp, R. Polanek, Z. Lecz, L. Volpe, A.P. Conde, A.A. Andreev, IEEE Trans. Plasma Sci. 44, 2382–2392 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artūras Baguckis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baguckis, A., Plukis, A., Reklaitis, J. et al. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses. Appl. Phys. B 123, 290 (2017). https://doi.org/10.1007/s00340-017-6868-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6868-7

Navigation